Ядерные реакторы - страница 53
Охлаждение жидким металлом совмещает в себе достоинства газового и водяного охлаждения. Расплавленные металлы обладают высокой температурой кипения и поэтому позволяют избежать высоких давлений в первичном контуре реактора. Большая по сравнению с газами теплоемкость металла не вызывает необходимости прогонять через реактор большие массы теплоносителя. Одним из самых приемлемых теплоносителей такого типа является легкоплавкий металл натрий.
Если в графитовом реакторе заменить воду натрием, то при давлении теплоносителя 5–10 атмосфер можно значительно поднять температуру в первичном контуре и получить коэффициент полезного действия атомной электростанции, превышающий 30 процентов.
Натрий сравнительно слабо поглощает нейтроны, и поэтому в больших реакторах такого типа можно обойтись ураном с малым обогащением (около одного процента). Если же применять урановые элементы, покрытые цирконием или слоем очень тонкой стали, то можно работать и на природном уране. Графито-натриевые реакторы в ближайшее время будут применяться в энергетических установках. Недостатком натриевого охлаждения является довольно высокая радиоактивность натрия. Вследствие этого первичный контур, выполненный с расплавленным натрием, трудно обслуживать.
В атомных электростанциях вполне возможно также применение гомогенных и гетерогенных реакторов, где в качестве замедлителя используется тяжелая или простая вода.
Общий недостаток всех описанных выше реакторов заключается в том, что вырабатываемая в них энергия получается в основном за счет урана>235. В будущей атомной энергетике, по всей вероятности, главную роль будут играть размножающие реакторы, в которых атомная энергия выделяется из природного урана и тория. В этом направлении и работают советские ученые. Так, академик А. И. Алиханов с сотрудниками разработали схему гомогенного размножающего реактора с кипящей водой, о которой было рассказано в предыдущем разделе.
Значение развития ядерной энергетики огромно. Дело не только в стоимости электроэнергии. Перевод тепловых электростанций на ядерное топливо даст возможность передать огромные количества угля и нефти химической промышленности. При их химической переработке получается много весьма ценных и необходимых нам материалов. Запасы угля и нефти на земле не так уж велики, и, вероятно, через 30–40 лет будет считаться варварством сжигать химическое сырье в топке паровых котлов. Вся потребность человечества в электрической энергии будет обеспечена гидроэлектрическими и ядерными станциями.
Имеется у ядерных электростанций и ряд других преимуществ.
В приведенной на рис. 64 сравнительной диаграмме видна работа тепловой и атомной электростанций. Слева размещено сырье, необходимое для выработки электроэнергии, справа — продукция электростанций.
Тепловая электростанция требует для своей работы большое количество топлива, воды и воздуха. При ее эксплуатации получаются газообразные отходы в виде дыма, содержащего большое количество золы и несгоревшего угля. Этот дым загрязняет атмосферу городов и поселков.
Для работы атомной электростанции не нужен воздух. Она потребляет ничтожные количества ядерного топлива — урана или тория. По весу они в два с половиной миллиона раз меньше, чем соответствующие по запасу энергии количества угля. Атомная электростанция не дает дыма. Получающееся некоторое количество радиоактивных «осколков» может быть использовано для изготовления радиоактивных препаратов. Ядерный реактор электростанции излучает большое количество нейтронов и радиоактивных излучений, которые в основном поглощаются бетонной защитой. Но часть нейтронов может быть использована для облучения различных элементов с целью получения радиоактивных изотопов, которые используются в народном хозяйстве.
Атомный двигатель. Атомная энергия может быть использована не только для получения электричества.
Сейчас вполне возможна установка атомного двигателя на больших морских судах (рис. 65). Теплоноситель, выходящий из ядерного реактора, нагревает воду паровых котлов. Пар может быть использован обычным способом: либо для работы паровых машин, связанных с гребным валом, либо (что энергетически значительно выгоднее) для вращения паровой турбины. Паровая турбина имеет очень большое число оборотов, поэтому ее нельзя связывать прямо с гребным валом. Между турбиной и гребным валом устанавливается редуктор — прибор, позволяющий получать уменьшенное число оборотов вала.