Юный техник, 2007 № 06 - страница 6
Готовые изделия, как уже говорилось, монтируются в стеновые панели и служат потом весь срок существования самого здания. Как только запускается контрольный сигнал — по графику или в произвольно выбранное время, — получаемое из кабеля отражение говорит специалистам, все ли в порядке со зданием.
К преимуществам системы относится ее высокая точность — на датчики не влияют ни электромагнитные поля, ни солнечная радиация. Кроме того, оптоволоконные системы не требуют электропитания, постоянного надзора.
Интересно также, что решетки чувствительны не только к деформации, но и к температуре. А это очень важно. И не только потому, что при нагреве или охлаждении бетон, сталь или иной строительный материал деформируется. Оптоволоконная решетка может послужить и сигнализатором возникновения пожара.
В. ДУВИНСКИЙ, спецкор «ЮТ»
ПО СЛЕДАМ СЕНСАЦИЙ
Ловушки для невидимок
Недавно мировую печать обошло сенсационное заявление канадских ученых: создан квантовый компьютер мощностью 16 кубит. Кроме того, канадцы обещали к концу 2007 года предъявить миру компьютер мощностью 32 кубита, а в следующем — 100 кубит. Что же такое квантовый компьютер? Каковы его возможности? Почему его мощность измеряется в загадочных кубитах?
В 1958 году известный американский физик, лауреат Нобелевской премии Ричард Фейнман заинтересовался проблемой — можно ли моделировать квантовые системы на обычном компьютере? Выяснилось, что нельзя.
Дело в том, что уже при решении задачи, в которой элементарные частицы имеют, например, 1000 электронных спинов[1], в компьютерной памяти должно быть достаточно ячеек, чтобы хранить 2>1000 переменных. А гигабайт — это всего лишь 2>30.
Так что с задачей, в принципе, не могли справиться не только тогдашние маломощные электронно-вычислительные машины (ЭВМ). Даже современные компьютеры квантовые задачи решают с весьма грубыми приближениями.
Так выглядит прототип процессора квантового компьютера Orion, созданный канадцами.
Говорят, что квантовый компьютер — это своего рода реактивный двигатель вычислительной техники.
Сегодня уже ясно: количество задач, которые «не по зубам» самым мощным суперкомпьютерам, достаточно велико. Например, если заставить ЭВМ разлагать на простые множители тысячезначное число, то и машине, способной выполнять 10>12 операций в секунду, понадобятся многие миллиарды лет! Не случайно такой класс задач ученые называют «нетрактуемыми», то есть нерешаемыми.
Этим, кстати, пользуются криптографы, создавшие метод шифрования и секретные коды, основанные как раз на разложении больших чисел на простые множители. Так что специалистам нужны не просто сверх, а сверх-сверх-сверхмощные компьютеры.
В общем, когда стало понятно, что с помощью обычной ЭВМ квантовые проблемы не осилить, Фейнман задумался: может, попробовать создать компьютер, работающий по квантовым законам? Дескать, надо действовать по принципу «пусть пироги печет пирожник». Подобную мысль несколько позднее высказал и российский математик Юрий Манин.
В 1994 году американскому теоретику Питеру Шору удалось описать алгоритм работы гипотетического квантового компьютера, который мог бы решить задачу разложения больших чисел на простые множители, проделав при этом «всего» 1000>3, то есть миллиард операций. А Сет Лойд из Массачусетского технологического института придумал и возможную схему такого устройства.
Впрочем, не только Шор и Лойд, но и специалисты из других стран взялись за теоретические описания и создание подобных вычислительных систем. Сейчас предложены десятки разных вариантов; упомянем некоторые из них.
Первый квантовый компьютер ученые создали, сами того не подозревая, указывает в одной из своих работ академик К.А. Валиев. Его «опытным образцом» стал импульсный ядерный магнитно-резонансный (ЯМР) спектрометр, о котором «ЮТ» не раз писал.
Дело в том, что в этом устройстве уже используются Q-биты (кубиты) — единицы измерения квантовой информации. Они представляют собой спины ядер, входящих в состав атомов, которые, в свою очередь, образуют исследуемую в ЯМР-спектрометре молекулу. Каждое ядро имеет свою частоту резонанса в магнитном поле, поясняет К.А. Валиев.