Занимательная пиротехника - страница 4
10KNO3+4S+12C —> 8СО2+ЗСО +5N2 +К2С03 +2K2S04+2K2S (V0 = 279,5 л/Кг, t = 2660 °С, f = 3100 Кг/см2)
То есть, молярное соотношение реагирующих компонентов равно 2,5КClз : S : ЗС. Расчёт показывает, что в этом случае вес выделяющихся газообразных продуктов составляет 53%, а из каждого килограмма пороха образуется 280 л газа.
Уравнение Дебу соответствует разложению английских военных дымных порохов, сгорающих при повышенном давлении с образовавшем полисульфидов:
При этом твёрдый остаток составляет 57,8%. Его количество увеличивается при сжигании пороха на открытом пространстве.
В своё время Альфред Берхард Нобель (1833-1896) и Фридрих Абель, установив, что в продуктах горения английского минного пороха отсутствует сульфат калия, предложили следующее уравнение его разложения:
Глава 1. Позвольте представиться
13
что вполне соответствует составу: селитра 66%, сера 14%, древесный уголь 20%.
Как правило, в большинстве подобных уравнений не учитываются углеводы, входящие в состав древесного угля, а ведь содержание углерода в нём составляет всего 72-96%.
Разложение тройной смеси, рассчитанной на полное горение (Бертло), соответствует составу 84: 8: 8 и подходит под уравнение:
IOKNO3 + 3S + 8С —> 6С02 + 5N2+2K2C03+ 3K2S04
(V0 = 204 л/Кг, t = 3354°С, f = 2804)
Такой порох при сгорании даёт небольшой объём газов, но очень высокую температуру взрыва вследствие полного сжигания углерода. На открытом пространстве количество планов от этого пороха также увеличивается.
В пиротехнике применяются большей частью смеси, имеющие недостаток окислителя, то есть, с отрицательным Кислородным балансом, поэтому расчёт компонентов по первому традиционному уравнению (2KN03+ S + ЗС) для нас всё же более предпочтителен.
Объём выделяемого газа в пороховой смеси можно увеличить, сместив направление реакции на выделение описи углерода:
2KN03 + S + 6С —> 6СО + N2_+ K2S
Как видно из уравнения, для этого надо вдвое увеличить содержание в составе древесного угля, то есть, на 13% от общей массы. Температура реакции, правда, при этом снизится, да и такая смесь будет вести себя поспокойнее, но именно она лежит в основе большинства реактивных составов фейерверков.
1.4. Что бы это значило?
ля повышения выживаемости давайте разберёмся. Базу пиротехники составляют вещества, некоторые не только красиво
14
1асть 1. Опасное знакомство
Взрывчатыми называются вещества (для простоты написания «ВВ»), способные при внешнем воздействии мгновенно разлагаться с выделением огромной механической, тепловой и световой энергии. Обычно, процесс такого разложения мы называем «взрывом».
Разложение с максимальной постоянной споростью не ниже 2 Км/с, получило название «детонация». Это слово происходит от латинского «detonare» (дословно «прогреметь») и означает очень быстрое химическое превращение ВВ, распространяемое со сверхзвуковой споростью и сопровождаемое выделением энергии. Собственно, по специфическому шуму мы и оцениваем, произошёл взрыв или нет.
Под инициирующими или первичными взрывчатыми веществами понимают такие, которые взрываются от теплового или механического воздействия (пламя, искра, удар, трение) и силой своего взрыва вызывают детонацию другого менее чувствительного ВВ. К ним относятся гремучая ртуть, азид и стифнат свинца (тенерес), тетразен и другие. Они применяются в капсюлях-детонаторах и капсюлях воспламенителях.
Бризантными называют взрывчатые вещества, которые устойчиво детонируют с большой спорость и дробят окружающие материалы. В их числе: тротил, октоген, гексоген, ТЭН, тетрил, мелинит, динамиты, аммонийно-селитровые ВВ и вся группа инициирующих веществ.
К счастью, большинство составов для фейерверков даже во «взрывном» режиме разлагаются значительно медленнее и относятся к группе так называемых метательных веществ или порохов.
Взрывчатые свойства пиротехнических составов характеризуются скоростью детонации, бризантностью и фугасным действием (табл. 1, 2).
Скорость детонации - это скорость, с которой надо убегать с места взрыва, чтобы остаться в живых.
Для пиротехнических композиций на основе калийной селитры обычно она не превышает 1 км/с, для хлоратных составов - 2,5 км/с, в то время как для некоторых бризантных веществ (ТЭН, гексоген, нитроглицерин и др.) скорость распространения ударной волны доходит до 8-9 км/с.