Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - страница 15
. Значительно лучше стали понимать, что ДНК – это генетический материал, в 1953 году, когда ее структура была выявлена Уотсоном и Криком во время работы в Кембридже (Англия). Предыдущие исследования установили, что ДНК состоит из кирпичиков, называемых нуклеотидами. Каждый нуклеотид состоит из сахара-дезоксирибозы, фосфатной группы и одного из четырех азотистых оснований – аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц). Фосфаты и сахара соседних нуклеотидов сцепляются и образуют длинный полимер. Уотсон и Крик установили, как эти детали соединяются вместе в элегантную трехмерную структуру.
Чтобы достичь этого, они использовали критически важные данные, полученные другими учеными. От Эрвина Чаргаффа они узнали, что четыре разных химических основания в ДНК обнаруживаются парами, что чрезвычайно важно, когда дело доходит до понимания «ступенек», из которых состоит лестница жизни. (В мою коллекцию по истории науки в моем бесприбыльном Институте Крейга Вентера входит лабораторный блокнот Крика того времени, где записаны неудачные попытки повторить эксперимент Чаргаффа.) Они получили ключ к решению от Мориса Уилкинса, который первым поразил Уотсона своими новаторскими рентгеновскими исследованиями ДНК, и Розалинд Франклин. На фото № 51 (также экспонат коллекции в Институте Вентера), сделанном Рэймондом Гослингом в мае 1952 года, видны черные перекрещенные отражения, которые оказались ключом к молекулярной структуре ДНК, выявляющие, что это двойная спираль, в которой буквы текста ДНК соответствуют перекладинам{52}.
25 апреля 1953 года статья Уотсона и Крика «Молекулярная структура нуклеиновых кислот: структура дезоксирибонуклеиновой кислоты»{53} вышла в Nature. Спиральная структура ДНК стала прозрением, «намного красивее, чем мы ожидали», пояснил Уотсон, потому что комплементарная природа букв – то есть составляющих ее нуклеотидов – ДНК (буква А всегда стоит в паре с Т, а Ц с Г) сразу же показала, как копируются гены при делении клетки. Хотя это был давно искомый механизм наследственности, реакция на статью Уотсона и Крика была далека от немедленной. Но признание в конце концов пришло, и через девять лет Уотсон, Крик и Уилкинс поделили Нобелевскую премию по физиологии и медицине 1962 года «за их открытия молекулярной структуры нуклеиновых кислот и ее значения для передачи информации в живой материи».
Однако двое ученых, предоставивших важнейшие данные, не были включены в число лауреатов: Эрвин Чаргафф (и он был обижен и озлоблен до конца своих дней){54}, и Розалинд Франклин, умершая в 1958-м, в 37 лет от рака яичников. Освальд Эвери несколько раз номинировался на Нобелевскую премию, но он умер в 1955 году, до того, как признание его достижений стало достаточным, чтобы его наградить. Эрлинг Норрби приводит слова Горана Лильестранда, секретаря Нобелевского комитета Каролинского института, из его обзора 1970 года по Нобелевским премиям по физиологии и медицине: «Открытие Эвери в 1944 году роли ДНК как носителя наследственности представляет собой одно из самых важных достижений в генетике, и достойно сожаления, что он не получил Нобелевской премии. К тому времени, как утихли голоса несогласных, он уже умер»{55}.
История Эвери иллюстрирует, что даже в академической среде, где должен господствовать рациональный, основанный на доказательствах научный взгляд, вера в конкретную теорию или гипотезу может ослеплять ученых годами и даже десятилетиями. Эксперименты Эвери, Маклеода и Маккарти были так просты и элегантны, что их легко можно было повторить; для меня остается загадкой, почему этого не сделали раньше. Наука отличается от других областей приложения усилий тем, что старые идеи отпадают, когда набирается достаточно много противоречащих им данных. Но, к несчастью, этот процесс занимает время.
Жизнь клетки на самом деле зависит от двух типов нуклеиновых кислот: дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК). Современная теория считает, что жизнь началась в мире РНК, потому что она более универсальна, чем ДНК. РНК играет двойную роль – как носителя информации, так и фермента (рибозим), способного катализировать химические реакции. Как и ДНК, РНК состоит из линейной последовательности химических букв. Три из этих букв – А, Ц и Г – те же, что и в ДНК, а вместо тимина (Т) в РНК входит урацил (У). Ц всегда связывается с Г; А связывается только с Т или У. Так же как в ДНК, одиночная цепочка РНК может соединиться с другой цепочкой, состоящей из комплементарных букв. Уотсон и Крик предположили, что РНК – это копия записи ДНК в хромосоме, переносящая эту запись в рибосому, где производятся белки. Программа ДНК