Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - страница 18

стр.

Одновременно с этим прорывом в понимании «программного обеспечения» жизни – ДНК – значительно продвинулось и описание ее «аппаратной части» – белков. Белки – это базовые строительные блоки клетки, фундаментальной структурной единицы всех известных живых существ, от единственной клетки бактерии до тех ста триллионов, из которых состоит человеческое тело. Как упоминалось выше, мир клетки впервые был обнаружен Робертом Гуком, о котором некоторые говорят как об английском Леонардо да Винчи. Гук был первым британским ученым, показавшим, как экспериментальный метод с применением инструментов реально работает и приносит нарастающее знание. В своем шедевре Micrographia{59} (1665) Гук описал клетки (само слово cell происходит от латинского cellula – «ячейка»), разглядев сотовую структуру среза пробки под микроскопом. Каждое живое существо на земле состоит из клеток, окруженных мембраной, которая создает изолированный внутренний объем. Там находится генетический материал и клеточные механизмы для его репликации.

Первые двадцать лет ХХ века в микробиологии в попытках идентифицировать молекулярную основу этой «аппаратной части» господствовала так называемая «коллоидная теория». В то время не было четких доказательств существования больших молекул, и «биоколлоидисты» утверждали, что антитела, ферменты и все такое прочее на самом деле состоят из коллоидов, то есть разнообразных смесей маленьких молекул{60}. В центре их внимания были не гигантские органические молекулы, удерживаемые вместе сильными ковалентными связями, а агрегации мелких молекул, удерживаемых вместе относительно слабыми связями. В начале 1920-х, однако, эта точка зрения пошатнулась благодаря немецкому химику-органику Херманну Штаудингеру (1881–1965), который показал, что такие большие молекулы, как крахмал, целлюлоза и белки, на самом деле представляют собой длинные цепочки из коротких повторяющихся молекулярных блоков, удерживаемых вместе ковалентными связями. Однако поначалу представление Штаудингера о том, что он называл Makromoleküle (макромолекулы), встретило почти всеобщее неприятие. Макромолекулярная теория была отвергнута даже коллегами Штаудингера по Швейцарской высшей технической школе (ETH) в Цюрихе, где он был профессором, пока не переехал в 1926-м во Фрайбург. И только в 1953-м (в год открытия двойной спирали) Штаудингер наконец получил Нобелевскую премию за свой весомый вклад в науку.

В последние годы мы пришли к тому, что рассматриваем клетку, эту основную единицу жизни, как фабрику, взаимосвязанный ряд сборочных линий, движимых белковыми машинами{61}, созданными эволюцией за тысячи, миллионы или даже миллиарды лет для выполнения специальных задач. Эта модель отмечает возрождение идеи, имевшей хождение в XVII веке, прежде всего в трудах Марчелло Мальпиги (1628–1694), итальянского врача, одного из первых микроскопистов{62}. Мальпиги предположил, что телесными функциями управляют крохотные «органические машинки».

Теперь мы знаем, что это белки, образующие множество различных классов. Катализаторы, например, ускоряют огромное разнообразие химических реакций, а фиброзные белки вроде коллагена – это главный структурный элемент, четверть всех белков, найденных у позвоночных, то есть животных со спинным хребтом, включая млекопитающих. Эластин, напоминающий резину, составляет основу легочной ткани и стенок артерий. Мембраны вокруг наших клеток содержат белки, которые помогают вводить и выводить молекулы в клетку и из клетки и участвуют в клеточной коммуникации; глобулярные белки связывают, преобразуют и выпускают химические вещества. И так далее.

Последовательность ДНК непосредственно кодирует структуру каждого белка, определяющую его активность. Генетический текст определяет линейную последовательность аминокислот, которая в свою очередь определяет сложную трехмерную структуру окончательного белка. После синтеза эта линейная полипептидная цепочка складывается в свою характерную форму: некоторые части образуют пластины, другие – стопки, складки, завитушки, закручиваются в спирали и в другие сложные конфигурации, которыми определяется работа механизма. Некоторые части белковой машины гибкие, другие – жесткие. Некоторые белки – это сборочные узлы, части большей трехмерной белковой машины.