Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - страница 24
Первый существенный сдвиг в нашем нынешнем понимании того, чему стал свидетелем Броун, произошел более чем через 75 лет после его открытия, когда Альберт Эйнштейн (1879–1955) рассмотрел теоретически, как невидимые молекулы, из которых состоит вода, должны подпихивать плавающие в ней мелкие частицы. До статьи Эйнштейна 1905 года кое-кто из физиков (особенно Эрнст Мах, 1838–1916) все еще сомневался в физической реальности атомов и молекул. Модель Эйнштейна была в конце концов подтверждена точными экспериментами, проведенными в Париже Жаном Батистом Перреном (1870–1942), который в 1926 году был награжден за эту и другие работы Нобелевской премией.
Броуновское движение оказалось важным, когда дело дошло до понимания работы живых клеток. Многие жизненно важные компоненты клеток, такие как ДНК, намного больше отдельных атомов, но все же достаточно малы, чтобы их двигали постоянные удары окружающего моря атомов и молекул. Так что, хотя ДНК действительно имеет форму двойной спирали, благодаря силам хаотического броуновского движения это извивающаяся, сгибающаяся, кружащаяся спираль. Белковые роботы живых клеток способны складываться в свои правильные формы лишь потому, что их компоненты – это подвижные цепочки, пластинки и спирали, которые постоянно толкутся внутри защитной клеточной мембраны. Жизнь движется броуновским движением, начиная с кинезиновых грузовичков, которые тянут маленькие мешочки с веществами вдоль микротрубочек к вращающейся АТФ-синтетазе{73}. Критически важно, что броуновское движение зависит от температуры: слишком низкая – и движения не хватает; слишком высокая – и все структуры идут вразнос от бешеного движения. Поэтому жизнь может существовать только в узком спектре температур.
Внутри этого спектра в клетках постоянно происходит что-то вроде девятибалльного землетрясения. «Вам не нужно было бы даже нажимать на педали велосипеда: просто приделайте к колесу храповик, чтобы оно не могло крутиться назад, и тряситесь вперед», как говорили Джордж Остер и Хуньгун Ван с факультета молекулярной и клеточной биологии Калифорнийского университета в Беркли{74}. Белковые роботы совершают похожий трюк, используя храповики и рабочие такты для обуздания силы броуновского движения. Благодаря непрекращающемуся беспорядочному движению и вибрации молекул на коротких дистанциях очень быстро происходит диффузия, что позволяет происходить биологическим реакциям с малыми количествами реагентов в чрезвычайно тесных объемах большинства клеток.
Теперь, когда мы знаем, что линейный текст ДНК определяет строение белковых роботов и РНК, которые управляют нашими клетками, а их строение, в свою очередь, определяет их функции, следующий вопрос очевиден: как нам читать и понимать этот текст, чтобы мы могли понять программу жизни?
Глава 4. Оцифровка жизни
Первые дни молекулярной биологии были отмечены тем, что многим показалось самонадеянным отщеплением новой науки от биохимии. Однако наш спор не касался методов биохимии, но лишь их слепого игнорирования новой области химии информации.
Сидней Бреннер, 2005{75}
Настала эра цифровой биологии, в которой белки и другие взаимодействующие молекулы в клетке можно рассматривать как компьютерное «железо», а информацию, закодированную в ДНК, – как клеточный «софт», то есть программы. Вся информация, нужная для создания живой самовоспроизводящейся клетки, заключена в цепочках двойной спирали ДНК. По мере чтения и истолкования этого текста мы в конце концов сможем полностью понять, как работают клетки, а затем изменять и улучшать их путем написания новых клеточных программ. Но, конечно, это легче сказать, чем выполнить: изучение этих программ – ДНК – показывает, что они значительно сложнее, чем мы думали даже лет десять назад.
В то время как первая линейная последовательность аминокислот в белке (инсулине) была установлена Фредом Сэнгером в 1949 году, разработка методов чтения ДНК оказалась делом долгим. В 1960-х и 1970-х продвижение было медленным и секвенирование измерялось в нескольких парах оснований в месяц или даже в год. Например, в 1973 году Аллан Максэм и Уолтер Гилберт из Гарвардского университета опубликовали статью, описывающую, как с помощью их нового метода секвенирования