Журнал «Вокруг Света» №02 за 2007 год - страница 37
Однако более точных результатов нейрофизиологи не могли добиться очень долго. Применяемые в то время электроды внешне напоминали швейные иглы. Они могли эффективно работать лишь несколько часов, пока у их кончиков не скапливались химические компоненты клеток, из-за чего чувствительность катастрофически падала. Кроме того, острие электрода с относительно большим диаметром повреждало нейроны даже при незначительных смещениях головы. Поскольку клетки головного мозга не генерируют болевые импульсы, определить наличие повреждений по реакции подопытного животного практически невозможно — дискомфорта оно не чувствует.
Дистанционно управляемая мышь Хилари с видеокамерой на спине. Имплантированные в мозг электроды заставляют ее по команде менять направление движения
Только в 1990-х годах в Университете Ханеманна Мигель Николелис (Miguel A. L. Nicolelis) и Джон Чэпин (John K. Chapin) применили гибкие электроды с тефлоновым покрытием и диаметром острия около 50 микрон. Результат оказался ошеломительным: удалось снять данные сразу с 48 нейронов головного мозга крысы. Причем одновременно регистрировалось как восприятие сенсорной информации, так и ответная регуляторная активность. Через некоторое время инженер-электронщик Харви Уиггинс (Harvey Wiggins) сконструировал устройство, которое обеспечивало выборочный анализ, фильтрацию и усиление нейронных сигналов. Этот аппарат был окрещен американскими нейрофизиологами «ящиком Харви» по аналогии с «волшебным ящиком» иллюзиониста Гудини.
Ящик Харви продемонстрировал свои возможности в первом же эксперименте Джона Чэпина. Крысу с вживленными электродами поместили в клетку с небольшой педалью, при нажатии на которую появлялась порция воды и пищи. Когда крыса научилась обеспечивать себя кормом, педаль отключили, а вместо нее к дозатору кормушки подключили ящик Харви. После некоторого привыкания крыса стала управлять кормушкой прямыми сигналами мозга. Затем педаль убрали вовсе. Это заставило крысу изрядно понервничать, но через некоторое время ее мозг сгенерировал алгоритм, соответствующий нажатию на педаль. Образно говоря, животное «представило» процесс нажатия. И кормушка сработала.
Из шести подопытных крыс четыре успешно освоили новый метод кормления. Очевидно, что в применении к человеку возможности такой технологии вообще неограниченны. Нужно только разработать методику получения алгоритмов для любого действия или психоэмоционального состояния. Инвалид, который мысленно управляет искусственной конечностью, «продумывая» необходимое действие, — и это лишь снежинка на вершине айсберга.
Бразильский нейрофизиолог Мигель Николелис с коллегами из Гетеборгского университета в Швеции продолжил исследования на обезьянах. Сигналы имплантированных электродов использовались для управления искусственной рукой, которая успевала выполнить «представляемое» движение раньше, чем сама обезьяна! Обычное запаздывание между сигналом и реакцией животного составляет примерно 0,3 секунды, а ящик Харви срабатывал намного быстрее. Получилось, что искусственная рука может не просто заменить инвалиду потерянную, но и дать ему существенное преимущество.
Дальнейшие исследования стали все больше походить на добротный киберпанк. В июне 2004 года американские хирурги имплантировали в двигательную область коры головного мозга 24-летнего полностью парализованного человека микрочип BrainGate, разработанный в компании Cyberkinetics из города Фоксборо, штат Массачусетс. Крошечный чип дал парализованному человеку возможность управлять телевизором и компьютером — например, рассылать письма по электронной почте и даже играть в аркадные компьютерные игры. Управление возможно даже и в то время, когда парализованный занят чем-либо другим, например беседует или двигает головой. По словам разработчиков, это далеко не предел возможностей их технологии — чипы делались исключительно для предварительного тестирования.
Но, очевидно, не каждый пациент согласится на пусть и безопасную, но экспериментальную операцию. На это достойный ответ есть у специалистов Швейцарского федерального института технологий (Swiss Federal Institute of Technology). Им удалось обойтись восемью ЭЭГ-электродами, закрепленными в шапочке, — никаких имплантатов или вживленных электродов. Конечно, «чувствительность» этого аппарата намного ниже, поэтому директор института Жан-Альберт Феррез (Jean-Albert Ferrez) рекомендовал данную технологию исключительно парализованным ниже шеи, чтобы избежать общего «шума», создаваемого нервными сигналами от всего тела. Данных, снимаемых швейцарским прибором, хватает для уверенного управления инвалидной коляской. Однако с 2003 года никакой информации от института ни об успехах, ни даже о получении дальнейшего финансирования нет.