Журнал «Вокруг Света» №10 за 2008 год - страница 3
Можно ли заранее узнать о возникновении цунами и предупредить людей? Для тех, что вызваны землетрясениями, прогноз возможен, потому что скорость сейсмической волны намного превышает скорость морской. И зафиксировав сильный толчок магнитудой выше 7, сейсмологи уже ставят вопрос о возможности цунами. Но придет к берегу оно не сразу. Выигрыш во времени может составлять минуты и даже часы — все зависит от удаленности эпицентра землетрясения. Если он оказался на суше, то цунами вообще не стоит опасаться. Иногда и сильные землетрясения на дне акваторий не порождают цунами. Только реальная фиксация волны, а именно локального повышения уровня океана или моря, служит неоспоримым подтверждением цунами, но, к сожалению, большинство мареографических пунктов, где проводят такие измерения, расположены у побережий, что сильно уменьшает время, отведенное на предупреждение населения об опасности.
Первым в мире был организован Тихоокеанский центр предупреждения цунами — в 1948 году после катастрофы, произошедшей двумя годами ранее на Гавайских островах.
Японская система предупреждения действует с 1952 года, она опирается на очень густую сеть сейсмических станций. Особую опасность для этой страны представляют цунами, возникающие на ее западных побережьях, при землетрясениях в Японском море. Так, в мае 1983 года там погибло несколько десятков человек. Дело в том, что время подачи предупреждающего сигнала — 13 минут, а первые волны подошли к берегу через 9 минут после толчка, в некоторых районах — через 3 минуты. Чтобы избежать жертв в будущем, в Японии создали локальные системы, где возможность цунами оценивают по сейсмическим данным в одной-единственной точке. В случае неблагоприятного прогноза в цунамиопасном районе автоматически отключают подачу газа и электричества, теле- и радиопрограммы транслируют предупреждающий текст, включают уличные сирены и начинают эвакуацию населения.
В СССР службу предупреждения начали создавать после северокурильской трагедии 1952 года. Ведь сейсмичность этого района — одна из самых высоких в мире. Вдоль Курило-Камчатской островной дуги расположен крайне активный пояс землетрясений, а также цепь действующих вулканов длиной около 2000 километров. К сожалению, в 1990-х годах эту службу ликвидировали, и теперь единственным преимуществом перед опасностью цунами служит малая заселенность дальневосточного побережья.
Владимир Сывороткин
Анатомия спутника
Представьте, что вам предложили снарядить космическую экспедицию. Какие устройства, системы, запасы понадобятся вдалеке от Земли? Сразу вспоминаются двигатели, топливо, скафандры, кислород. Немного подумав, можно вспомнить о солнечных батареях и системе связи... Дальше в голову приходят разве что боевые фазеры из сериала «Звездный путь». Между тем современные космические аппараты, особенно пилотируемые, оснащены множеством систем, без которых невозможна их успешная работа, но широкой публике о них почти ничего неизвестно.
Вакуум, невесомость, жесткое излучение, удары микрометеоритов, отсутствие опоры и выделенных направлений в пространстве — все это факторы космического полета, практически не встречающиеся на Земле. Чтобы совладать с ними, космические аппараты оснащают множеством приспособлений, о которых в обыденной жизни никто и не задумывается. Водителю, например, обычно не надо заботиться об удержании автомобиля в горизонтальном положении, а для поворота достаточно покрутить баранку. В космосе же перед любым маневром приходится проверять ориентацию аппарата по трем осям, а повороты выполняются двигателями — ведь нет дороги, от которой можно оттолкнуться колесами. Или вот, например, двигательная установка — ее упрощенно представляют баками с топливом и камерой сгорания, из которой вырываются языки пламени. Между тем в ее состав входит множество приспособлений, без которых двигатель в космосе не заработает, а то и вовсе взорвется. Все это делает космическую технику неожиданно сложной по сравнению с земными аналогами.
Трубопроводы двигателя самой мощной европейской ракеты «Ариан-5». Фото: SPL/EAST NEWS