Журнал «Вокруг Света» №10 за 2010 год - страница 40
Ртутные люминесцентные лампы приблизили состав света к дневному (по сравнению с лампами накаливания их обычно и называют энергосберегающими, хотя этого названия достойны и другие лампы). В них электрический разряд ионизирует атомы ртути, а те, возвращая себе оторванные электроны, испускают ультрафиолет, который заставляет светиться люминофор, покрывающий колбу изнутри. Люминесцентные лампы эффективнее переводят электроэнергию в свет, поскольку меньше нагреваются и дают большую часть излучения в тех участках спектра, где чувствительность глаз выше, чем в красной области. Но спектр первых люминесцентных ламп был далек от привычного теплового. Хотя выглядел он белым, цветовосприятие под ним искажалось. К тому же люминесцентные лампы заметно мерцали, утомляя глаза. А еще они были большими, не сразу разгорались и быстро перегорали при частых включениях. Применялись они в основном в учреждениях, отчего стали восприниматься как холодный «официальный» свет.
Техника, однако, не стоит на месте, и почти все недостатки люминесцентных ламп сегодня устранены. Электронные пускорегулирующие устройства избавили от неприятного мигания. Новые люминофоры дают свет более близкий к натуральному дневному, причем есть лампы с разной цветовой температурой — от холодных белых (6500 К) до теплых желтоватых (2700 К). Размеры ламп резко сократились за счет сворачивания газоразрядной трубки в спираль. Решена проблема частых включений и медленного разогрева. Наконец, благодаря унификации цоколя люминесцентные лампы стали взаимозаменяемы со старыми лампами накаливания и поэтому смогли прийти в жилые дома. Цена их первое время кусалась, но с налаживанием массового выпуска стала постепенно снижаться. Настал звездный час люминесцентного освещения.
Лампа накаливания
1. Двойная вольфрамовая спираль, излучающая при нагреве свет, и ее держатели
2. Стеклянная колба с винтовым цоколем
3. Инертный газ, заполняющий колбу и увеличивающий срок службы
Опоздавшие к поезду
К сожалению, промышленность России не успела подготовиться к тотальному переходу на компактные люминесцентные лампы. Их массовое производство не было развернуто, и страна все больше зависит от китайского импорта, который продается под российскими брендами. Правительство, подстегивая промышленность наверстать упущенное, запрещает продажу обычных лампочек накаливания. Заводы срочно переориентируются на опасное ртутное производство, но меры эти запоздалые и, вообще говоря, бессмысленные. Зарубежные производители люминесцентных ламп торопятся «отбить» ранее сделанные инвестиции, а весь мир уже активно осваивает новые светодиодные технологии освещения.
Светодиодные панели еще долговечнее и экономичнее, чем люминесцентные лампы. При этом они не содержат опасной ртути, не боятся частых включений, гибко регулируются по яркости и совершенно не мерцают. На освещение в развитых странах тратится 15–20% производимой электроэнергии. Переход на светодиоды позволит в несколько раз сократить затраты энергии в этом секторе. Поэтому по всему миру государства объявляют о планах тотального внедрения этой энергосберегающей технологии, а ведущие производители — о приоритетности полупроводникового направления в освещении.
Когда люминесцентная лампа, которой вы заменили вчера лампу накаливания, отслужит свой срок, на ее место вы уже сможете поставить светодиодный излучатель. Будет он отечественный или импортный, решается прямо сейчас. Опоздав к «люминесцентному поезду», Россия тем не менее имеет пока шанс успеть на светодиодный и не только обойтись без массового импорта твердотельных лампочек, но и стать одним из значимых игроков на рынке освещения XXI века. В Санкт-Петербурге на предприятиях «Светлана-Оптоэлектроника» и «Оптоган» уже разворачивается производство экологически чистых и высокоэффективных полупроводниковых светильников.
От Маркони до Алферова
Впервые свечение точечного кристаллического детектора наблюдал в 1907 году инженер Генри Раунд из лаборатории Гульельмо Маркони. Внимательно явление электролюминесценции изучил Олег Лосев из Нижегородской радиолаборатории, показавший в 1923 году, что вблизи p-n-перехода в карбиде кремния происходит выпрямление электрического тока, сопровождающееся свечением. Первый патент на «световое реле» был выдан Лосеву в 1927 году, но реальное освоение данной технологии началось не в России, а в США в 1960-е годы, когда полупроводники заявили о себе в полную силу. В 1961 году Роберт Байард и Гари Питтман из компании Texas Instruments изобрели и запатентовали технологию изготовления полупроводниковых источников невидимого света — инфракрасных светодиодов. В 1962 году благодаря усилиям Ника Холоньяка из компании General Electric на свет появился первый красный светодиод. Довольно скоро, всего через 10 лет, красненькие циферки загорелись на табло электронных калькуляторов и часов. За прошедшие с тех пор полвека яркость светодиодов выросла в миллион раз, а цена за штуку упала в тысячу раз.