Звезда Смерти Гизы - страница 53

стр.

Сначала Белл задался вопросом: как Бём смог создать модель электрона для обычной реальности, когда фон Ньюман доказал, что никто не сможет этого сделать? Модель Бёма выполняла поставленную задачу: она воспроизводила результаты квантовой теории, пользуясь реальностью, состоящей только из обычных объектов. Значит, ошибка должна была заключаться не в модели Бёма, а в доказательстве фон Ньюмана.

…Изучая доказательство фон Ньюмана, Белл размышлял о том, можно ли найти действительно железный аргумент, который установил бы жесткие ограничения для моделей реальности, стоящих за квантовыми фактами.

…На основе квантовой теории и математического анализа Белл смог показать, что любая модель реальности — обычной или контекстной — должна быть нелокальной. В локальной реальности ничто не может двигаться быстрее света. Теорема Белла гласит, что в любой реальности такого рода информация передается недостаточно быстро для того, чтобы объяснить квантовые факты; следовательно, реальность должна быть нелокальной.

…Предположим, реальность состоит из контекстных сущностей, которые не обладают собственными атрибутами, но приобретают их в момент измерения (такой тип реальности был близок взглядам Бора и Гейзенберга). Теорема Белла требует, чтобы контекст, определяющий атрибуты таких сущностей, включал области за пределами световых скоростей, где происходит фактическое измерение. Иными словами, лишь нелокальные контекстные реальности могут объяснить факты.

Теорема нелокальной взаимосвязи является еще одним жизненно важным компонентом физических принципов, воплощенных в Гизе, поскольку две нелокальные системы — Солнечная система и галактика Млечный Путь — гармонически сопряжены таким образом, что из них можно черпать инерциальную энергию. Это подразумевает мгновенный перенос информации (инерциальной энергии) из геометрической конфигурации трех систем: земной, солнечной и галактической. Идея о том, что реальность представляет собой нелокальный субстрат квантового вещества или эфира, уже встречалась в предыдущей главе.

Что же на самом деле подвергается измерению в квантовой механике? Этот вопрос приводит к сути проблемы, называемой «проблемой квантовых измерений». Если во вселенной существует одна универсальная сила, которой подчиняются все квантовые и иные объекты, то это гравитация. «Каждый объект, который мы наблюдаем, постоянно пульсирует в такт с гравитационным ритмом отдаленных звезд»[224]. Как мы убедимся, Великая Пирамида пульсирует в такт множеству планетарных и небесных ритмов. Для того чтобы понять эту проблему, нам нужно вернуться к фотоэлектрическому эффекту и четвертому варианту теории квантовой механики, так называемой сумме или «интегральному пути» американского физика Ричарда Фейнмана. Если мы модифицируем фотоэлектрический эксперимент и выстрелим) пучком света через очень узкое отверстие по металлическому листу, выбитые электроны будут образовывать концентрические окружности — волновую форму, довольно похожую на концентрические волны, возникающие после того, как мы бросаем камень в пруд.

Квантовая механика говорит нам, что динамические атрибуты электрона — его момент движения и положения в пространстве — являются контекстными, т. е. до определенной степени создаются самим актом измерения или испытывают его влияние. Если мы снова модифицируем эксперимент и поместим рядом два отверстия, через которые проходит каждый фотон света, то увидим классическую схему интерференции, где интерферометром служит экран или тонкий лист металла. Проблема в том, какую траекторию выбрал фотон? Отвечая на этот вопрос, Фейнман, по сути дела, сказал, что хотя нельзя определить, какую траекторию выбрал отдельный фотон, можно усреднить траектории нескольких фотонов и получить некую статистическую историю траекторий, выбранных с наибольшей вероятностью.

Впрочем, концепция статистического усреднения не решает проблему, а лишь обостряет ее. По одной версии это означает, что физики не могут представить какое-либо физическое состояние квантовой системы в классическом смысле, но могут описать ее лишь как «волну вероятности». Но описание вероятности, как и любой другой аспект человеческого опыта, все равно должно быть выражено в терминах классической конкретной реальности. Где же проходит граница между нашим классическим, или реальным, миром и миром квантовых явлений?