Эйлер. Математический анализ - страница 10
В 1735 году у ученого возникла серьезная глазная инфекция. Есть мнение, что он заболел из-за стресса, вызванного срочной работой по определению широты Санкт-Петербурга. Так или иначе, Эйлер на некоторое время ослеп на правый глаз. Несмотря на то что зрение постепенно к нему вернулось, спустя три года ученый снова потерял зрение на правом глазу, уже окончательно. Однако, если верить словам, приписываемым
Эйлеру, его дух не был сломлен этим бесповоротным ухудшением зрения: "Так даже лучше, я не буду отвлекаться".
Он производил вычисления без видимых усилий, как другие люди дышат или как парят орлы.
Доминик Франсуа Жан Араго (1786-1853)
В 1738 году он получил Grand Prix Парижской академии — за который также боролись Вольтер и Эмили дю Шатле — за свое эссе об огне. Два года спустя, в 1740 году, Эйлер снова выиграл, обогнав Даниила Бернулли и Колина Маклорена, в этот раз за эссе об отливах и приливах.
Сразу же по приезду в Санкт-Петербург Эйлер одно за другим начал делать открытия, которые оказали огромное влияние на его научную жизнь. Считается, что первым из его моментов славы стало создание функции Г (заглавная греческая буква "гамма*), базового инструмента математического анализа. Намеки на Г появлялись в переписке между Даниилом Бернулли и Кристианом Гольдбахом уже около 1720 года, но только в 1729 году Эйлер впервые дал ей определение, а в 1814 году Адриен Мари Лежандр (1752-1833) ввел обозначение "гамма", записав его так: Г(x). Гамма-функция часто появляется в распределении вероятностей и активно используется физиками.
Обычно ее можно встретить в описании явлений, требующих применения экспоненциальных интегралов, типичных для атомной физики; она также распространена в астрофизике, динамике жидкостей и сейсмологии. Эта функция применяется во многих областях математики, особенно в комбинаторике и, в частности, в анализе дзета-функций Римана, имеющих огромное значение в изучении простых чисел. Целью Эйлера было найти способ интерполяции, как это называлось в то время, заключавшейся в том чтобы, зная крайние значения переменной, вывести ее промежуточные значения естественным образом, не прибегая к искусственным методам. Рассмотрим пример. Так называемый факториал натурального числа л! в арифметике, впервые встречающийся у Кристиана Крампа (1760-1826), равен
n! = n(n - 1)(n -2) · ... · 3 · 2 · 1,
то есть является произведением всех натуральных чисел, меньших или равных л. Факториал — чрезвычайно быстро растущая функция, как видно из следующей таблицы.
n | n! |
0 | 1 |
1 | 1 |
2 | 2 |
3 | 6 |
4 | 24 |
5 | 120 |
6 | 720 |
7 | 5040 |
8 | 40 320 |
9 | 362 880 |
10 | 3628 800 |
100 | 9,3326215444 · 10>157 |
1000 | 4,0238726008 · 10>2567 |
10000 | 2,8462596809 · 10>35659 |
100000 | 2,824229408 · 10>456573 |
Факториал определен только для натуральных чисел; последовательность факториала прерывна. Интерполировать факториал означает продлевать его, пока не найдется непрерывная функция f(x) которая равна n!, когда значение х равно значению натурального n.
Почти банальным примером является понятие квадрата числа. Пусть дано натуральное число n, его квадрат будет равен n>2 = n · n. Его можно интерполировать на любое вещественное число х, просто записав f(x) = х>2. Эйлер интерполировал факториал n! и в 1729 году нашел непрерывную функцию f(x), которая вела себя как факториал, когда x = n был натуральным числом. Мы будем называть ее Г(х), что, собственно, и является ее современным обозначением. Эйлер определил значение
Г(x) в каждой точке посредством того, что сегодня мы бы назвали пределом:
Г(x) = lim>n→∞(n!n>x)/(x (х+1)(х+2)...(х+n).
Сейчас вместо этого выражения используется интегральный вид:
Г(x) = ∫>0>∞ е>-tt>z-1dt.
Он более прост, с ним легче работать, и к тому же он действителен в области комплексных чисел. При глубоком изучении Г(х) из нее можно получить огромное количество интереснейших для математиков формул, например
Г(1 - z)Г(z) = π/sin(πz),
которая связывает гамма-функцию с числом π и тригонометрическими функциями.
Определить Г(х) можно разными способами. В XIX веке была особенно популярна формула Карла Вейерштрасса (1815-1897), в которой используется постоянная Эйлера (она обозначается буквой у" тоже "гамма", но строчная):