Эйлер. Математический анализ - страница 11
Г(z) = e>-γz/z ∏>n=1>∞(1 + z/n)>-1e>z/n
Для этой функции верно:
Г(1)=1
Г(1 + х) = хГ(х).
При помощи гамма-функции выводится знаменитая формула Стирлинга (1692-1770), которая считается образцом красоты символов, поскольку в ней гармонически сочетаются постоянные π,е и число n:
n! = √(2πn)(n/e)>n
И наконец, скажем о связи между гамма и дзета-функцией ξ(z). Последняя имеет огромное значение в теории чисел, в частности в интереснейшей области простых чисел:
ξ(z)Г(z) = ∫>0>∞t>z-1/(e>t-1)dt.
Изучая гамма-функцию, Эйлер натолкнулся на еще одну, получившую название "бета" и обозначенную буквой В. Она также очень полезна в области анализа, и ее можно определить разными способами. Один из них — с помощью интеграла:
при условии, что действительные части х и у являются положительными. Еще один способ состоит в использовании гамма-функции, которую мы определили выше:
В(х,у) = Г(x)Г(y)/Г(x+y).
После изучения гамма- и бета-функций Эйлер занялся теорией чисел, вдруг резко изменив направление своей научной работы, что было для него весьма характерным. В частности, его привлек вопрос, который за век до того оставил нерешенным французский ученый Пьер Ферма (1601-1665).
Дзета-функция — королева всех математических функций, она привлекает наибольшее внимание специалистов, и ей посвящено наибольшее количество сайтов в интернете. Ее название происходит от греческой буквы ξ (дзета), и в первый раз ее использовал Эйлер в решении так называемой Базельской задачи, принесшей ему известность. Эйлер доказал, что бесконечная сумма обратных квадратов равна π>2/6:
1 + 1/2>2 + 1/32 + 1/4>2 + ... + π>2/6,
а затем обобщил этот результат, рассмотрев подробнее следующую функцию:
ξ(x) = 1 + 1/2>x + 1/3>x + 1/4>x + ...
Она может принимать любое значение х из области R вещественных чисел. Эйлер вычислил множество значений дзета-функции, но прямой метод нахождения этих бесконечных сумм неизвестен и по сей день. Сам Эйлер открыл способ приведения бесконечной суммы £ к конечному результату, получив, благодаря легкости обращения с алгебраическими формулами, выражение
ξ(x) = Σ>n=1>∞1/n>s = ∏>k=1∞1/(1 - 1/p>k>s),
где р>k пересекают исключительно область простых чисел. Так обнаружилась неожиданная связь дзета-функций с этими числами. При помощи инструментов анализа дзета-функцию можно перенести в комплексную область, если брать значения s не из области R (то есть вещественных чисел), а из комплексной области С. Впервые дзета-функцию до этой области расширил и изучил великий немецкий математик Бернхард Риман (1826-1866). Сегодня эта функция известна как дзета-функция Римана, и с ней связана так называемая гипотеза, или проблема Римана: невероятное предположение, которое до сих пор не было доказано и считается одной из главных нерешенных задач современной математики. Гипотеза Римана входит в число семи проблем тысячелетия, за решение каждой из которых Институт Клэя в качестве приза выплатит один миллион долларов.
Связь между Эйлером и Ферма была очень тесной. Если мы проследим научные изыскания Эйлера в теории чисел, то увидим, что в основном он пытался решить одну за другой оставленные без ответа задачи Ферма. Это было непросто, поскольку французский ученый редко записывал свои вопросы отдельно, а обычно делал комментарии прямо в книгах, которые читал и анализировал. Он любил бросать вызов своим коллегам, задавая им задачи, которые сам уже решил.
Один из самых интересных вопросов из наследия Ферма — числа, которые были названы его именем, числа Ферма. Они обозначаются буквой F и определяются формулой
F>n = 2>2n +1.
При n = 0,1,2,3,4 получим
>F0 = 2>>20> + 1 = 2>1 + 1 = 3
>F1 = 2>>21> +1 = 2>2 + 1 = 4 + 1 = 5
>F2 = 2>2>2> + 1 = 2>4 + 1 = 16 + 1 = 17
>F3 = 2>>23> + 1 = 2>5 + 1 = 256 + 1 = 257
>F4 = 2>>24> + 1 = 2>16 + 1 = 65 536 + 1 = 65 637.
Все они являются простыми числами. Следующее число Ферма выглядит так:
>F5 = 2>>25> + 1 = 2>32 +1 = 4 294 967 296 + 1 = 4 294 967 297.
Было бы логично предположить, что оно, как и предыдущие, является простым. По стандартам того времени более рискованно, хотя и не намного, было выдвинуть гипотезу (как сделал Гольдбах) о том, что все эти числа простые, подтверждая тем самым мнение самого Ферма. Гольдбах сообщил Эйлеру об этой задаче в 1729 году, а в 1732-м тот уже нашел ее решение: F