Фотоны и ядра - страница 18
Информация о структуре будет намного богаче. Поворачивать электрический вектор световой волны умеют и растворы многих веществ, например сахарные. При этом угол поворота оказывается строго пропорциональным количеству сахара в растворе. Так что можно приспособить поляриметр для измерения содержания, сахара, такие приборы называются сахариметрами, и их можно найти почти в любой химической лаборатории.
Этими двумя примерами не исчерпывается применение поляриметров, но приведенные два, пожалуй, являются главными.
Оптическая часть микроскопа состоит из окуляра и объектива. Окуляр — это линза, к которой мы приближаем глаз; объектив почти касается рассматриваемого предмета. Предмет помещается на расстоянии, несколько большем фокусного расстояния объектива. Между объективом и окуляром возникает перевернутое увеличенное изображение. Надо, чтобы оно оказалось между окуляром и фокусом окуляра. Окуляр играют роль лупы. Можно доказать, что увеличение микроскопа равно произведению увеличений, которые дают окуляр и объектив по отдельности.
На первый взгляд может показаться, что с помощью микроскопа можно рассмотреть сколь угодно мелкие детали предмета. Почему бы, например, не сделать фотографию, увеличивающую размеры в тысячи раз, затем рассмотреть ее в микроскоп, и получить уже увеличение в миллион раз, и так далее.
Такого рода рассуждение не выдерживает критики. Прежде всего напомним, что увеличение фотографических картинок ограничено размером зернышка фотопленки. Ведь каждый кристаллик бромистого серебра действует как целое. Читатель, без сомнения, видел сильно увеличенные фотографии и замечал, что увеличение вовсе не приводит к уточнению картины, а только размазывает детали.
Но если мы сможем избежать операции фотографирования и будем увеличивать изображение оптическими способами, к чему имеется полная возможность (никто не мешает увеличивать число линз), то мы быстро убедимся, что и в этом случае большое увеличение не имеет смысла. Предел полезному увеличению любого прибора дает волновой аспект электромагнитного поля. Рассматриваем ли мы предмет через увеличительное стеклышко, просто глазом, с помощью микроскопа или телескопа — все равно во всех этих случаях световая волна, идущая от светящейся точки, должна пройти через отверстие. Но при этом возникает явление дифракции, т. е. отклонение светового луча от прямого пути. Луч в той или иной степени «заглядывает за угол». Поэтому изображение точки никогда не будет точкой, а будет пятнышком. И как ни стараться, невозможно сделать размер этого пятна меньшим длины волны света.
Существенно уметь прикинуть, при каких условиях ход электромагнитной волны заметно отклоняется от прямолинейного пути.
Если обозначить через х линейное отклонение от прямого пути, наблюдаемое на расстоянии f от источника излучения, а размер препятствия или отверстия, которое находится на пути следования луча, равен а, то имеет место следующее соотношение:
x = λ∙f/a
Здесь λ — длина волны. Из этого уравнения следует, что дифракцию можно наблюдать и от мельчайших частиц, и от небесных тел. Все зависит от того, о волнах какой длины и о каких расстояниях идет речь. То же самое можно сказать и об отверстиях. Вовсе не обязательно иметь дело с крошечными отверстиями, чтобы наблюдать дифракцию. Скажем, отверстие, в которое пролезет теннисный мяч, позволит наблюдать дифракционные явления, но, правда, лишь на расстояниях порядка сотен метров.
Простенькое уравнение, которое мы привели, позволяет судить о предельных возможностях микроскопов и телескопов.
Микроскоп не разрешает нам разглядеть детали предмета с большей точностью, чем микрометр. Ну, а детали миллиметрового размера мы видим невооруженным глазом. Отсюда ясно, что, пользуясь оптическим микроскопом, нет смысла добиваться увеличения больше чем в тысячу раз.
Но, это ограничение касается оптического микроскопа. Вот если бы удалось сконструировать микроскоп, который мог работать не со световыми лучами, а с какими-либо другими, у которых длина волны была бы меньшей, то полезное увеличение микроскопа возросло бы. Такой микроскоп давно создан и работает во многих научных лабораториях. Это электронный микроскоп. Длина волны электронов может быть выбрана очень маленькой (см. с. 112).