Фотоны и ядра - страница 19
С помощью электронного микроскопа удается видеть детали строения вещества, измеряемые десятимиллионными долями миллиметра. Биологи увидели молекулы ДНК — те самые длинные молекулы, с помощью которых наследственные черты передаются от родителей их потомству. Видны молекулы белков, можно разобраться в структуре мембран клеток, увидеть детали строения мышечных волокон. Я привожу лишь одну рекордную фотографию (рис. 2.4), которая с увеличением большим, чем в 3 миллиона, показывает кристаллическую решетку минерала пирофиллита. Видно расстояние между плоскостями кристалла, равное 4,45 А°.
Предел возможностям электронного микроскопа связан не с его разрешающей способностью — мы можем без труда уменьшить длину волны электронов. Все дело в контрастности изображения: изучаемую молекулу надо положить на подложку, а она ведь сама состоит из молекул. На фоне молекул подложки трудно разглядеть ту молекулу, которая нас интересует.
Электронный микроскоп — сложный и дорогой прибор. Обычно его «рост» — порядка полутора метров. Электроны разгоняются высоким напряжением. А за счет чего создается увеличение? Принцип тот же, что и у оптического микроскопа. Увеличение создается линзами. Но, разумеется, эти «линзы» совсем не похожи на линзы обычного микроскопа. Электроны фокусируются электрическими полями, приложенными к металлическим пластинам с отверстиями, а также магнитными полями, созданными катушками.
Существует множество различных технических приемов, помогающих создать изображение. При помощи микротомов изготовляются тончайшие срезы, рассматриваемые на просвет, молекулы на подложке оттеняются путем осаждения на них паров металлов. Можно также получить «реплику» образца, т. е. покрыть его тончайшей пленкой прозрачного материала, а затем стравить сам объект.
Электронная микроскопия — большой и важный раздел физики, ей стоило бы посвятить отдельную главу. Но малый объем сочинения гонит меня вперед.
Мысли о том, что при помощи выпуклых стекол можно рассматривать удаленные предметы, высказывались еще в XVI веке. Тем не менее мы не ошибемся, если припишем открытие телескопа (вернее — подзорной трубы) великому Галилею. Она была построена в июле 1609 г., и уже через год Галилей опубликовал свои первые наблюдения звездного неба.
Как и микроскоп, зрительная труба (телескоп-рефрактор) является в принципе комбинацией тех же двух линз — объектива, обращенного к предмету, и окуляра, обращенного к глазу. Так как рассматривается бесконечно удаленный предмет, то его изображение создается в фокальной плоскости объектива. Фокальная плоскость окуляра совпадает с плоскостью объектива, и из окуляра выходят пучки параллельных лучей.
Возможности телескопа растут с увеличением диаметра объектива. Так, например, большим телескопам доступны на Луне кратеры диаметром 1 км, в небольшие же телескопы обычно можно рассмотреть кратеры диаметром 150 км.
В астрономической обсерватории мы найдем не только телескопы-рефракторы. Придется наверняка познакомиться и с телескопом-рефлектором. Поскольку мы рассматриваем далекие предметы и требуется собрать лучи в фокусе, то для этой цели можно воспользоваться не сферической линзой, а сферическим зеркалом. Преимущество очевидно: мы избавляемся от хроматической аберрации. Недостатки зеркального телескопа связаны лишь с трудно осуществимыми высокими требованиями, предъявляемыми к поверхности зеркала.
Разумеется, и у телескопа имеется предел полезного увеличения, связанный с волновым аспектом света. Луч далекой звезды размывается в кружок, и это дает предел угловому расстоянию между звездами, которые мы можем разглядеть в телескоп. Желание увеличить возможности телескопа и здесь связано с увеличением его диаметра. Вероятно, предельные возможности телескопов лежат где-то близко к одной десятой секунды дуги.
В последние годы на помощь телескопам пришла новая техника. Астрономы изучают небо, фиксируя весь спектр электромагнитных волн, которые присылает нам космос. Немного мы поговорим о вторжении современной физики в тихую обитель звездочетов в гл. 7.