Фотоны и ядра - страница 20
Как уже неоднократно подчеркивалось, электромагнитное поле обладает волновым аспектом. Так же точно волновым аспектом обладают потоки частиц — электронов, нейтронов, протонов. Звук является результатом механических смещений среды, происходящих по закону волны. Общим для всех этих физических процессов является возможность приписать любому излучению длину волны, частоту и скорость распространения, связанные уравнением с = λ∙v. Простейшее излучение монохроматично, т. е. описывается одной длиной волны. В общем случае излучение представляет собой сложный спектр, т. е. сумму волн разной длины и разной интенсивности.
Волновой аспект излучения проявляется в двух явлениях: при сложении волн, прошедших разные пути, а также при рассеянии телами, встречающимися по пути луча. Важный частный случай рассеяния волн — это дифракция. Сложение волн носит название интерференции.
Здесь речь пойдет об интерференции света. Это явление лежит в основе действия приборов, которые помогают точно измерять расстояния, а также некоторые другие физические величины. Приборы, использующие явление интерференции для прикладных целей, и носят название интерферометров.
Принцип измерения расстояний сводится к подсчету числа волн, укладывающихся на измеряемом отрезке.
На первый взгляд может показаться, что такие измерения проводить несложно. Возьмем два источника света и сведем их лучи в одну точку. В зависимости от того, придут ли волны в точку наблюдения «горб к горбу» или «горб к впадине», создастся светлое или темное пятно. Поставим теперь задачу измерить расстояние, на которое мы хотим переместить один из источников света. При таком перемещении фазовые соотношения двух волн в точке наблюдения будут меняться. Нам остается лишь считать количество смен света на темноту, и тогда, учитывая геометрию опыта и зная длину волны света, вычислим без труда величину перемещения.
В принципе все верно. Но, действуя таким способом, мы не будем наблюдать картины чередования света и темноты. Экран будет все время оставаться светлым. Итак, простой опыт не удался.
Совершено несомненным является такой результат: два луча света, испускаемые разными источниками, сведенные в одну точку, всегда будут усиливать друг друга. Так, может быть, волновая теория неверна?
Нет, теория верна, электромагнитному излучению присущ волновой аспект. Но мы попытались действовать, сделав неверное предположение. Для того чтобы наблюдалась интерференция, необходимо, чтобы между складывающимися волнами все время сохранялась неизменная разность фаз. А ведь фазовые соотношения даже между волнами, исходящими от двух атомов одного и того же источника, совершенно, случайны. Мы уже говорили, что атомы света выбрасывают фотоны, не «договариваясь» друг с другом о своем поведении. Следовательно, два разных источника излучают несогласованно, или, как говорят, создают некогерентное излучение.
Но не оказывается ли тогда согласованное, т. е. когерентное, излучение чем-то вроде Синей птицы? Не оказывается!
Решение проблемы исключительно красиво и в то же время крайне просто, как большинство оригинальных идей: надо заставить излучение атома складываться с самим собой! А для этого требуется расщепить луч, идущий от каждого источника, на две части, заставить эти две части одного луча пройти разные пути, а затем уже свести в одну точку. Вот при этом условии мы, наблюдая интерференцию и меняя разности путей частей расщепленного луча, и вправду можем измерить интересующие пас перемещение и длину, подсчитывая число чередований света и темноты.
Мы описали принцип, лежащий в основе интерферометрических измерений, открытый еще в 1815 г. французским физиком Огюстеном Френелем (1788–1827). Рассмотрим теперь способы, лежащие в основе действия интерферометров, с помощью которых расщепляют луч и создают разности хода между расщепленными частями луча.
Остановимся поподробней на интерференции лучей света, отраженных от внешней и внутренней сторон прозрачной пластинки или пленки. Явление заслуживает внимания как по своей практической значимости, так и потому, что наблюдается в природе. Кроме того, на этом примере легко уясняются многие важные понятия, которыми мы пользуемся при описании световых и других электромагнитных волн.