Фотоны и ядра - страница 31
Чем больше атомов содержит молекула, тем, естественно, больше размеры элементарной ячейки. С этим усложнением растет и объем информации. Ведь число отражающих, плоскостей будет тем больше, чем больше ячейка. Число измеряемых отражений может колебаться от нескольких десятков до нескольких тысяч.
Мы обещали ознакомить читателя с основными идеями рентгеноструктурного анализа. Сначала, так сказать, перевернем проблему. Положим, что структура кристалла известна во всех деталях. Это значит, что мы знаем рисунок атомов, т. е. располагаем, сведениями о координатах всех атомов, образующих элементарную ячейку (пожалуйста, освежите в своей памяти те сведения о структуре кристалла, которые были даны во 2-й книге). Рассмотрим какую-либо систему отражающих плоскостей. Достаточно очевидно следующее. Если большинство атомов кристалла ляжет на плоскости, проходящие через узлы решетки, то все атомы будут рассеивать рентгеновские лучи в одной фазе. Возникнет сильный отраженный луч. Теперь представьте себе другой случай. Половина атомов попадает на узловые плоскости, а половина атомов находится как раз по середине между отражающими плоскостями. Тогда половина атомов рассеивает падающий луч в одной фазе, а половина — в противоположной. Отражения не произойдет!
Это два крайних случая. Во всех остальных мы будем получать, лучи разной интенсивности. Измерительный прибор — его называют автоматическим дифрактометром — способен измерить интенсивности отражений, отличающиеся в десять тысяч раз.
Интенсивность луча однозначно связана с расположением атомов между узловыми плоскостями. Формула, дающая, эту связь, слишком сложна, чтобы мы ее привели. Да это и не нужно. Сказанного выше в отношении двух крайних случаев достаточно, чтобы читатель поверил в существование такой формулы, в которой интенсивность представлена в функции координат всех атомов. Сортность, атомов также учитывается этой формулой, ибо чем больше электронов у атома, тем сильнее он рассеивает рентгеновские лучи.
В формулу, связывающую структуру и интенсивность отраженного луча, входят, конечно, и сведения об ориентации отражающей плоскости, а также о размерах элементарной ячейки. Таких уравнений мы можем записать столько, сколько измерено отражений.
Если структура известна, то интенсивности всех лучей могут быть рассчитаны и сопоставлены с опытом. Но ведь это не та задача, которую нам надо решить! Нужно справиться с обратной задачей: по сведениям об интенсивности нескольких десятков, или сотен, или тысяч отражений найти координаты всех атомов в ячейке. На первый взгляд может показаться, что при современных возможностях электронно-вычислительных машин никакой особой проблемы в решении этой обратной задачи не существует. Много уравнений? Ну так что же, вычислительная машина справится с их решением!
Однако дело обстоит далеко не так просто. Опытные данные — это интенсивности лучей. Интенсивность пропорциональна квадрату амплитуды. Формула связи, о которой шла речь, является, по сути дела, формулой интерференции. Волны, рассеянные всеми атомами кристалла, интерферируют между собой. Происходит сложение амплитуд волн, рассеянных всеми атомами. Вычисляется суммарная амплитуда, а интенсивность находится возведением амплитуды в квадрат. Такую задачу решить ничего не стоит. А как решить обратную? Извлечь квадратный корень из интенсивности, чтобы получить амплитуду? Правильно. Но у корня квадратного ведь два знака!
Надеюсь, вам становится ясной сложность задачи. Уравнений, из которых можно найти координаты атомов, у нас более чем достаточно. Но в правой части уравнения стоят числа известные с точностью до знака.
Казалось бы, дело безнадежное. И действительно, на первых порах исследователи и не пытались решать обратную задачу. Они действовали методом «проб и ошибок». Принимали на основании сведений о родственных структурах, что неизвестная структура выглядит так-то. Рассчитывали интенсивности десятка лучей, сравнивали с опытом. Ничего похожего? Ну что же, примем другую модель структуры.
Для простых случаев такой подход хоть и с трудом, но все же давал верные результаты. Но когда «структурщики» (таково жаргонное название этой группы исследователей) изучили практически все простые структуры, над возможностью решения обратной задачи пришлось крепко задуматься.