Фотоны и ядра - страница 32
В середине 30-х годов догадались, что даже сложные структуры могут быть «решены» (я опять прибегаю к жаргонной фразе), если ограничиться изучением таких молекул, которые содержат много легких атомов и один тяжелый. Тяжелый атом содержит много электронов и рассеивает рентгеновские лучи много сильнее, чем легкие. Поэтому в первом, грубом приближении можно считать, что кристалл состоит только из тяжелых атомов. Если в ячейке один атом, то найти его координаты методом «проб и ошибок» труда не составит. Найдем его координаты и, полагая, что только он и хозяйничает в кристалле, выдвинем предположение, что знаки амплитуд, определенные для фиктивной структуры, состоящей только из тяжелых атомов, те же самые, что и для реальной структуры.
Важнейшим открытием, имеющим двадцатилетнюю давность, явилось доказательство теоремы о наличии связи между амплитудами отражений разных семейств плоскостей. Так, например, связаны между собой знаки амплитуд трех отражений, сдвинутых по фазе по отношению к узлу ячейки на величины α, β и α + β. Оказывается, если произведение cos α ∙ cos β ∙ cos (α + β) больше 1/8 по абсолютной величине, то оно обязательно имеет положительный знак. Можете проверить.
Развитие этой идеи привело к так называемым прямым методам структурного анализа. Даже в достаточно сложных случаях экспериментальный прибор можно соединить с вычислительной машиной, и машина будет «выдавать на-гора» структуру кристалла.
Когда знаки амплитуд отражения установлены, то определение координат атомов становится, как указывалось, задачей на решение большого числа уравнений со многими неизвестными. Важно при этом, чтобы число уравнений по крайней мере в десять, а лучше в сто раз превосходило бы число подлежащих определению координат атомов.
О технике решения этой системы уравнений я рассказывать не буду. Прибегают к обходному пути, который сводится к построению так называемых рядов Фурье электронной плотности. Изложить теорию рядов Фурье, да ещё в применении к проблеме определения структуры, можно, к сожалению, лишь для специально подготовленного читателя. Но мне кажется, что это и ни к чему. Свою задачу, по мере сил своих, я выполнил — разъяснил суть метода.
В каком виде выдает физик — специалист в области рентгеноструктурного анализа — сведения о структуре вещества, которые нужны химику? Представление об этом дает рис. 3.3, на котором показана очень простая структура вещества, называемая барбитуратом аммония.
Определение структуры подобной сложности в настоящее время является «детской» задачей. Такую структуру определит автомат без всякого вмешательства исследователя. Электронно-вычислительная машина может выдать результат и в виде чисел (значений координат атомов), и в виде картинок, похожих на приведенною. Атомы разного химического сорта обозначены кружками разных размеров. Но если исследователь желает, то ЭВМ выдаст картину электронной плотности. Каждый атом изображается так как географы обрисовывают линиями равных высот горные пики.
Только в нашем случае замкнутые линии — это не высоты, а кривые, указывающие на плотность электронов в данном месте. Вершиной «горного пика» является центр атома.
Приведенный рисунок — это крошечная доля того вклада, который внес в науку описанный нами метод. Успех метода очень велик. На сегодня определены структуры более 15 тысяч кристаллов, в том числе несколько десятков структур белков, молекулы которых состоят из многих тысяч атомов.
Определение структуры сложных молекул закладывает фундамент биологической химии и биологической физики. Эти науки находятся сейчас в бурном периоде развития. От них ждут открытия секретов жизни, болезней и смерти.
Рентгеноструктурный анализ, несмотря на свой, солидный, семидесятилетний возраст, остается на передней линии фронта науки.
В предыдущем параграфе мы походя упомянули, что можно встретиться с «белым» спектром и с монохроматическим лучом. Каким образом выяснить характер спектра жесткого электромагнитного излучения? Когда он бывает «белым», а в каких случаях монохроматическим?