Фотоны и ядра - страница 38
Вдоль прямолинейного участка железнодорожного пути катится вагон с неизменной скоростью v. Параллельно дороге идет шоссе. По нему в том же самом направлении, мчится мотоциклист. Инспектор ГАИ, пост которого расположен вблизи железной дороги, свистит вслед нарушителю — он промчался мимо него со скоростью u, куда большей, чем дозволено. Маленький радар, которыми теперь снабжены многие инспекторы, показывает 85 км/ч. Машинист поглядывает на мотоциклиста, который быстро нагоняет, а затем и обгоняет поезд. И этому наблюдателю нетрудно измерить скорость мотоциклиста. Она будет равна u' = 35 км/ч. Мне не надо доказывать читателю, что скорость поезда равна 50 км/ч. Справедлив закон сложения скоростей:
u = v + u'
И вот это, казалось бы сверхочевидное правило не подходит для светового луча. Фотоны движутся с одной и той же скоростью по отношению к двум наблюдателям, находящимся в разных инерциальных системах.
Гений Эйнштейна состоял в том, что он отказался от этого очевидного вывода не только для света, но желая сохранить единый подход ко всем физическим явлениям, как электромагнитным, так и механическим, взял на себя смелость отказаться от закона сложения скоростей для всех тел.
Разумеется, с подобных позиций опыт Майкельсона и объяснять нечего. Раз скорость света универсальна, значит, она будет одинаковой во всех направлениях — и вдоль земной орбиты, и поперек пути обращения Земли вокруг нашего светила.
Из сформулированных принципов сразу же следует что скорость света является максимальной скоростью[1].
Действительно, если скорость света не добавляется к скорости движения источника, значит, обогнать свет невозможно. Эйнштейн в своих воспоминаниях пишет, что еще в 1896 г. у него возник вопрос: «Если бы можно было погнаться за световой волной со скоростью света, то имели бы мы перед собой не зависящие от времени волновое поле? Такое все-таки кажется невозможным».
Итак, ни одно тело, ни одна частица не могут двигаться со скоростью большей, чем скорость света. Вдумайтесь, пожалуйста, в это утверждение. Ввиду его кажущейся парадоксальности повторим еще раз. Если на Земле или иной планете из одного места в другое отправляется в путешествие электромагнитная волна, то скорость распространения этой волны, измеренная земным наблюдателем и наблюдателем, пролетающим над Землей в ракете, движущейся с фантастической скоростью, будет одной и той же. Это же утверждение справедливо и для всякой частицы, движущейся со скоростью, равной скорости электромагнитных волн.
Свет — не исключение в теории Эйнштейна. Ну, а как происходит дело, когда скорость движущегося тела меньше скорости света? Очевидно, что и в этом случае простой принцип сложения скоростей, которым мы всегда так уверенно пользуемся, несправедлив. Но отклонение от обычного правила сложения скоростей начнет чувствоваться лишь тогда, когда скорость тела будет очень и очень велика
Релятивистская механика — таково название механики быстро движущихся тел — приводит к следующему правилу сложения скоростей:
Прикиньте, какими должны быть значения v и v', чтобы понадобились поправки к простому правилу сложения скоростей.
Как Обстоит дело, к примеру, с космическими полетами? Работает ли обычное правило сложения скоростей, когда речь идет о движениях со скоростью в десятки километров в секунду?
Как известно, весьма целесообразным является запуск «вторичной» ракеты с какого-либо космического корабля-ракетоносителя. Возможно, именно таким способом будут отправляться ракеты к окраинам Солнечной системы. Обозначим через v скорость космического корабля по отношению к Земле, через v' — скорость запущенной с него ракеты по отношению к космическому кораблю. Положим обе скорости v и v' равными 10 км/с. Подсчитаем теперь по точной формуле сложения скоростей, чему будет равна скорость ракеты по отношению к Земле. Тогда к единице в знаменателе надо добавлять дробь 10>2/(9∙10>10) ~= 10>-9. Поправка совершенно ничтожна, т. е. работает классическое правило сложения скоростей.
Какое же тогда практическое значение имеет релятивистская механика? Дойдем до ответа и на этот вопрос. А пока что потянем следствия из сформулированных гипотез. Поскольку приходится распроститься с принципом сложения скоростей, то мы уже готовы к тому, что придется внести существенные коррективы и в другие формулы механики.