Фотоны и ядра - страница 41

стр.

Ясно, что для того, чтобы получить ответ на вопрос, из чего построен мир, надо разрушать частицы. Для этого нужны «снаряды», и чем большей энергией будут они обладать, тем больше надежды раскрыть эту тайну природы.

История производства быстрых частиц началась в 1932 г., когда сотрудники Резерфорда построили установку для получения протонов, которые разгонялись до энергий 500 кэВ. Затем последовали циклотроны, позволившие достигнуть энергий протонов, которые требовалось измерять уже мегаэлектронвольтами (напомним, что мега — миллион). На следующем этапе был изобретен синхротрон, позволивший разгонять протоны до миллиарда электронвольт. Началась эра гигаэлектронвольтов (гига — миллиард). Но теперь уже запроектированы машины, в которых счет пойдет на тысячи миллиардов электронвольт. В частности, физики, собиравшиеся в 1975 г. на международную конференцию (она происходила в Серпухове, где установлена одна из мощнейших машин этого типа), полагали, что надо было бы строить кольцевую машину с диаметром 16 км.

Но у читателя уже вертятся на кончике языка вопросы. В чем принцип действия таких машин? Почему им надо придавать кольцевую форму и, наконец, для чего они нужны?

По сути дела, ускорителем частиц является любой вакуумный прибор, к концам которого подведено высокое напряжение. Кинетическая энергия разогнавшейся до большой скорости частицы равна (впрочем, мы не в первый раз приводим эту формулу, но в этом беды нет: читатель ее тогда наверняка запомнит)

mv>2/2 = eU

И рентгеновские, и телевизионные трубки можно назвать ускорителями.

Но на этом принципе особо больших скоростей не получишь. Термин «ускоритель» применяется тогда, когда речь идет о машинах, разгоняющих частицы до скоростей, близких к скорости света. Для этой цели надо заставить частицу проходить последовательно много полей. Сразу же легко сообразить, что линейный ускоритель малоудобен, ибо для того, чтобы получить какие-то жалкие десятки тысяч электронвольт, уже нужны пути, равные многим сантиметрам. Для достижения десяти миллиардов электронвольт нужна длина порядка десятка километров.

Нет, такое лобовое, решение проблемы не годится! В 1936 г. Эрнест Лоуренс (1901–1958) положил начало строительству современных кольцевых ускорителей, которые он назвал циклотронами. В одной установке объединяется ускорение частицы электрическим полем и ее многократное возвращение к ускоряющему промежутку с помощью магнитного поля.

Ускоритель Лоуренса похож на консервную банку, разрезанную на две части по диаметру. К двум половинкам прикладывается быстропеременное напряжение. Заряженное частицы ускоряются в те моменты, когда они проходят расстояния, разделяющие половинки прибора. Внутри «консервной банки» мы заставляем частицы двигаться по окружности, накладывая на прибор магнитное поле; линии индукции которого перпендикулярны ее дну. Как известно, в этом случае заряженная частица описывает окружность радиуса

R = mv/eH

Время одного оборота.

Т = 2π∙m/eH.

Для. того чтобы электрическое поле между двумя половинками машины «подхватывало» частицы, надо подобрать переменное напряжение так, чтобы его знак менялся как раз к тому моменту, когда частица подойдет к промежутку между половниками.

Заряды создаются в центре прибора (скажем, ионизация водорода создает протоны). Первая окружность будет иметь небольшой радиус. Однако каждая следующая окружность будет иметь больший радиус, поскольку, согласно приведенной формуле, он пропорционален скорости движения частицы.

На первый взгляд кажется, что, увеличивая размеры циклотрона, а вместе с этим и радиус кольцевой траектории, мы можем сообщить частице любую энергию. Достигнув желаемой энергии, нам останется лишь с помощью отклоняющей пластинки выпустить пучок, наружу. Дело обстояло бы идеально, если бы не зависимость массы от скорости. Формула Эйнштейна для массы, не имеющая, казалось когда-то, никакого практического значения, становится основной при расчетах кольцевых ускорителей.

Поскольку с возрастанием скорости масса частицы возрастает, то период обращения не остается неизменным, а растет. Частица начинает запаздывать. Она придет к ускоряющему промежутку не в тот момент, когда фаза напряжения изменится на 180°, а позже. По мере возрастания скорости мы придем к такому положению, что электрическое поле не только перестанет подхватывать частицы, но даже будет их тормозить.