Фотоны и ядра - страница 45
Это важнейшее положение физики микромира устанавливает границы пригодности корпускулярного аспекта любых явлений, связанных с движением частиц вещества. Принцип Гейзенберга записывается в следующей форме;
Δx∙Δv > h/m
Здесь Δx и Δv — «размытость» нашего знания соответственно координаты и скорости движения (в направлении той же оси координат) сгустка материи, который мы рассматриваем в корпускулярном аспекте. Короче, Δx и Δv — это неопределенность в знании координаты и скорости частицы.
Необходимо подчеркнуть, что речь идет не о технических трудностях измерения. Приведенное соотношение связывает неопределенности, которые не удастся устранить в самом идеальном эксперименте. Сейчас лишь исторический интерес представляют различного рода схемы, которые предлагались для абсолютно точного измерения траектории и скорости движения частиц. Внимательным рассмотрением всегда можно было обнаружить принципиальный дефект схемы.
Попытаемся хотя бы несколькими словами пояснить, почему эксперимент не может дать большей точности, чем позволяет принцип Гейзенберга. Положим, что речь идет об определении положения частицы в пространстве. Чтобы узнать, где она находится, ее надо осветить. Как уже говорилось ранее, возможности различения деталей определяются длиной волны используемого излучения. Чем длина волны меньше, тем лучше. Но, уменьшая длину волны, мы увеличиваем частоту света, а значит, увеличиваем энергию фотона. Удар, который испытает рассматриваемая частица, лишит нас возможности вынести суждение о той скорости, которую она имела при встрече с фотоном.
Или еще один классический пример. Мы ставим на пути электрона узкую щель. Пролетев через щель, электрон падает на экран. Видна вспышка. Таким образом с точностью до ширины щели установлено местоположение электрона в момент, когда он проходил через отверстие. Погонимся за точностью. Для этой цели будем уменьшать размеры щели. Но тогда волновые свойства электрона начнут сказываться более резко (см. с. 49). Электрон может все дальше и дальше отклоняться от прямого пути. А это значит, что мы все в большей степени будем терять сведения о компоненте его скорости в направлении плоскости, в которой проделана щель.
Таких примеров можно придумать десятки, можно рассмотреть их количественно (что и делали физики в 30-х годах), и каждый раз будем приходить к приведенной выше формуле.
Обсудим оценки Δx и Δv, которые можно сделать в отношении частиц разной массы, пользуясь неравенством Гейзенберга.
Допустим, речь идет об электроне, принадлежащем атому. Можно поставить такой опыт, который установил бы, в каком месте находится электрон в данное мгновение? Поскольку размеры атома порядка 10>-8 см, то это значит, что желательна точность, скажем, 10>-9 см. Что же, в принципе (только в принципе) такой опыт осуществим. Но оценим с помощью неравенства потерю информации об этом электроне. Для электрона h/m примерно равно 7 см>2/с, и для него принцип Гейзенберга запишется так: Δx∙Δv > 7. Итак, Δv > 7∙10>9 см/с, что совершенно бессмысленно, т. е. о скорости электрона ничего нельзя сказать.
Ну, а если попытаться узнать, скорость атомного электрона поточнее? И для этой цели можно придумать принципиально осуществимый эксперимент. Но тогда будет полностью потеряно знание о месте, где электрон находится.
Неравенство, примененное к атомному электрону, показывает, что корпускулярный аспект в этом случае не работает. Понятие траектории электрона лишено смысла, о путях перехода электрона с одного энергетического уровня на другой также сказать ничего нельзя.
Картина меняется в том случае, когда мы интересуемся движением электрона в ионизационных камерах. Трек, оставленный электроном, может быть зримым. Значит, есть у него траектория? Имеется! А как же связать это с предыдущим расчетом? И не надо связывать. Теперь все рассуждения надо провести заново. Толщина трека порядка 10>-2 см. Следовательно, неопределенность в значении скорости даже для медленного электрона, который пролетает через камеру со скоростью около 1 км/с, практически пренебрежима по сравнению с этой величиной — она равна 7 м/с.