Фотоны и ядра - страница 46

стр.

Эти числовые примеры показывают нам, что корпускулярный аспект начинает исчезать по мере того, как мы «приглядываемся» — стараемся разглядеть порцию материи подетальней.

О протонах и нейтронах можно весьма часто говорить как о частицах. Но если речь идет об их поведении внутри атомного ядра, которое имеет размер 10>-13 см, то корпускулярный аспект не проглядывается.

Нетрудно также прикинуть, что в крупной молекуле с молекулярной массой порядка миллиона можно спокойно говорить как о горошинке. Такая молекула ведет себя как «честная» частица. Можно даже начертить траекторию ее теплового хаотического движения.

Давно прошло время, когда волново-корпускулярный дуализм воспринимался как нечто странное, нуждающееся в глубоком истолковании. Маститые ученые, даже такие, как Эйнштейн и Бор, яростно спорили о том, как надо трактовать столь «странное» поведение электронов и других частиц. В настоящее время подавляющее большинство естествоиспытателей не видит ничего особенного в использовании двух аспектов при описании различных явлений, в которых принимают участие электроны, ядра или фотоны.

Лет десять назад группа науковедов проводила анкетный опрос среди большой (около десяти тысяч человек) группы физиков. В числе прочих был задан вопрос: считает ли опрашиваемый, что проблема двух аспектов материи представляет интерес и не может считаться выясненной до конца? Только двадцать человек ответили, что они полагают, что неравенство Гейзенберга и прилегающие к нему проблемы, не являются истиной в последней инстанции.

Трудность примирения с этим важным законом природы объяснялась, видимо, логической ошибкой, лежащей в основе протеста, который формулировался так: «Не могу согласиться с тем, что поведение частички материи является непредсказуемым». Порочность фразы состоит в том, что о порции материи ведется речь как о частичке в обычном житейском понимании этого слова. На самом же деле порция материи идет ли речь о свете, микроволнах, электроне или ядре — вовсе не похожа на горошинку. Невозможно зрительно представить себе частицу материи. С этим ведь согласится каждый! Достаточно напомнить, что к электрону или протону неприменимы понятия цвета, твердости, температуры… Все эти свойства принадлежат лишь макроскопическим телам. Но если нельзя себе представить порцию материи, то тем более невозможно представить себе ее движение. Движение порции материи совмещает в себе два аспекта, волновой и корпускулярный. Поэтому непредсказуемым является лишь поведение одного из ее аспектов!

Квантовая механика (волновая механика; повторим еще раз, что это синонимы) дает нам сводку четких правил, с помощью которых мы можем предсказывать поведение порций материи. Описание частиц методами квантовой механики исчерпывающим образом отображает закономерности микромира. С ее помощью мы безошибочно предсказываем события; заставляем ее служить практике.

Конечно, это не означает, что в дальнейшем не будут открыты более общие законы природы, частным следствием которых станет современная квантовая механика, наподобие того как это произошло с механикой Ньютона. Эти общие законы должны быть пригодными для описания поведения частиц малой массы, движущихся с большими скоростями. Мы ждем с нетерпением — и надо признаться, ждем уже давно — создания теории, объединяющей все «механики» в одно целое. Для этой — увы, несозданной — теории даже имеется название: релятивистская квантовая механика.

Представляется удивительным, что каскад открытий, сделанных в первой четверти XX века, неожиданно приостановился. Читателю может показаться это утверждение странным. Но факт остается фактом. Несмотря на фантастический прогресс прикладных наук, несмотря на то, что за две последующие четверти столетия шла и идет высоким темпом научно-техническая революция, — несмотря на это, новых законов природы после открытия квантовой механики найдено не было… Придется подождать.

Глава 5

Строение атомных ядер

ИЗОТОПЫ

Мы рассказали в 3-й книге, как с помощью электрических и магнитных полей можно разделить пучок частиц, отличающихся отношением заряда к массе. Ну, а если заряды одинаковы, то становится возможным разделить частицы по величинам их масс. Для этой цели служит прибор, который носит название масс-спектрографа. Он широко применяется для химического анализа.