Фотоны и ядра - страница 47

стр.

Схема этого прибора показана на рис. 5.1.



Идея его заключается в следующем. В электрическое поле конденсатора поступают частицы с разными значениями скоростей. Выделим мысленно группу частиц с одинаковым отношением e/m. Поток этих частиц попадает в электрическое поле и расщепляется: быстрые частицы отклонятся в электрическом поле меньше, медленные — больше. Веер этих частиц поступает теперь в магнитное поле, перпендикулярное чертежу. Оно включено так, чтобы отклонять частицы в противоположную сторону. И здесь быстрые частицы будут отклоняться меньше, а медленные — больше. Отсюда следует, что где-то за пределами поля, выделенный нами мысленно пучок одинаковых частиц опять соберется в одну точку — сфокусируется.

Частицы с иным значением e/m также соберутся в точку, но в другую. Расчет показывает, что фокусы для всех e/m расположатся весьма близко к некоторой прямой. Если вдоль этой прямой поместить фотографическую пластинку, то частицы каждого сорта дадут знать о себе отдельной линией.

С помощью масс-спектрографа были открыты изотопы. Честь открытия изотопов принадлежит Дж. Дж. Томсону. В 1912 г., изучая отклонение пучка ионов неона в электрическом и магнитном полях, этот исследователь обратил внимание на то, что пучок расщепляется на две части. Атомная масса неона (точнее, относительная атомная масса) была известна с достаточной точностью — она равнялась 20,200. Обнаружилось, что на самом деле, атомы неона бывают трех сортов. Они имеют массовые числа 20, 21 и 22 (массовые числа — относительные атомные массы, округленные до целого числа).

Поскольку химические свойства неона не зависели от его массы, то достаточно скоро физики уверились в том, что различия связаны лишь с ядром. Заряд ядра и число электронов одинаковы — значит, разные сорта атомов неона должны занимать одно и то же место в таблице Менделеева. Отсюда и название: изотопы, т. е. занимающие одинаковые места.

В 20-х годах масс-спектрограф приобрел современные черты и началось изучение изотопического состава всех элементов. Все без исключения элементы представляют собой смесь изотопов. Среди них есть такие, как водород или кислород, состоящие в основном из одного изотопа (водороде массовым числом 1—99,986 %, кислород с массовым числом 16–99,76 %). Но встречаются и элементы с иным соотношением изотопов. К таким относится, например, хлор (75 % изотопа с массовым числом 35 и 25 % с массовым числом 37). Имеются элементы, которые состоят из большого числа изотопов. Мы привели примеры стабильных изотопов. О радиоактивных (нестабильных, распадающихся) разновидностях одного и того же элемента речь впереди.

Достаточно быстро качество прибора возросло настолько, чтобы установить: массы изотопов выражаются целыми числами лишь с точностью до второй — четвертой цифр после запятой. О причинах этого отклонения мы расскажем ниже.

Поскольку на химическое поведение масса ядер не влияет, то ясно, что имеется много химических соединений, отличающихся изотопным составом. Говорят, что есть два сорта воды — обычная и тяжелая. В обычной воде присутствует изотоп водорода с массовым числом 1, а в тяжелой — так называемый дейтерий, изотоп водорода с массовым числом 2. Однако в природе, встречаются три изотопа кислорода с массовыми числами 16, 17 и 18; значит, вода является смесью молекул шести разных типов. Если молекулы вещества состоят из большого числа атомов, то число, изотопических разновидностей может измеряться десятками и сотнями.

Разделение изотопов является важной отраслью промышленности. Особенно большое значение оно имеет в ряде процессов, сопутствующих получению атомной энергии. Надо иметь возможность отделить тяжелую воду от легкой, разнести по разным приемникам атомы разных сортов ядерного горючего — урана, тория. Список подобных задач, которые индустрия ставит перед физиками, можно было бы продолжить.

Сложность состоит в том, что по своей электронной структуре, а значит и по химическим свойствам, атомы различаются крайне незначительно. Для легких атомов с очень большим трудом, применяя многоступенчатую химическую экстракцию, удается провести такое разделение. Для тяжелых атомов считалось возможным применение лишь физических методов, использующих малые различия в массе атомных ядер.