Космические рубежи теории относительности - страница 10

стр.

РИС. 2.1. Эксперимент Эрстеда: электричество порождает магнитное поле. Когда по проводнику течёт электрический ток, вокруг проводника возникает магнитное поле. Об этом свидетельствует изменение направления стрелки компаса до и после включения рубильника.

В начале XIX в. было также открыто и обратное явление: изменение магнитного поля или движение в нём приводит к появлению электрического поля даже в отсутствие электрических зарядов. Если, например, перемещать между полюсами подковообразного магнита проволочную петлю, то по ней потечёт электрический ток (рис. 2.2). В этом состоит принцип работы электрогенератора.

РИС. 2.2. Магнитное поле порождает электрический ток (опыт Фарадея). При движении проволочной петли в магнитном поле в ней возникает электрический ток.

Эти фундаментальные открытия повлекли за собой множество экспериментов и исследований, апогеем которых был труд великого шотландского физика Джеймса Клерка Максвелла. За 9 лет (с 1865 по 1873 г.) Максвеллу удалось выразить все накопленные знания об электричестве и магнетизме в виде четырёх простых уравнений. Эти четыре уравнения, составившие основу теории электромагнетизма, включают практически всю информацию о свойствах и взаимосвязях электрических и магнитных явлений. Чтобы прийти к окончательному результату, объединяющему эти явления, Максвеллу пришлось встать на революционную по тем временам точку зрения: наличие электрических зарядов или магнитов коренным образом изменяет свойства пространства около этих зарядов или магнитов. Согласно Максвеллу, в пространстве возникают «натяжения», соответствующие электрическому или магнитному полям. Поэтому четыре уравнения Максвелла (рис. 2.3) часто называют уравнениями электромагнитного поля. Так впервые в истории науки появилось понятие поля. До работ Максвелла в классической физике считалось, что материальные тела непосредственно действуют друг на друга на расстоянии, без посредничества пространства между ними. Теперь же учёные поняли, что свойства пространства вокруг тел изменяются из-за присутствия самих тел.

РИС. 2.3. Уравнения Максвелла. Эти четыре простых уравнения полностью описывают всю совокупность взаимосвязей между электричеством и магнетизмом.

Теория электромагнетизма привела во второй половине прошлого столетия к замечательному открытию: оказалось, что из четырёх уравнений Максвелла можно получить волновое уравнение, описывающее свойства света. Это волновое уравнение таило в себе много неожиданного. Во-первых, оно совершенно по-новому интерпретировало свет: его луч представляет собой одновременные колебания перпендикулярных друг другу электрического и магнитного полей (рис. 2.4). Следовательно, свет можно рассматривать как электромагнитное излучение. Расстояние между горбами или впадинами двух последовательных волн называется длиной волны излучения.

РИС. 2.4. Электромагнитное излучение. Согласно уравнениям Максвелла, свет любой длины волны можно представить как колебания электрического и магнитного полей.

Во-вторых, выяснилось, что уравнение электромагнитной волны не накладывает никаких ограничений или условий на длину волны описываемого им излучения. Но из опыта физикам было известно, что обычный видимый свет соответствует очень узкому диапазону длин волн. Таким образом, волновое уравнение предсказывало существование совершенно неизвестных видов электромагнитного излучения, длины волн которых на много порядков величины больше или меньше, чем у видимого света. На протяжении десятилетий после этого теоретического предсказания было открыто много новых видов электромагнитного излучения. которые стали для нас привычными. Например, ультрафиолетовое и рентгеновское излучения имеют длины волн короче, чем у видимого света, а инфракрасное и радиоизлучение являются более длинноволновыми. Все эти виды излучения, включая и видимый свет, образуют электромагнитный спектр (рис. 2.5).

РИС. 2.5. Электромагнитный спектр. Электромагнитное излучение охватывает весь диапазон от чрезвычайно коротковолновых гамма-лучей до очень длинных радиоволн. Обратите внимание на то, что видимый свет занимает лишь малую долю спектра.