Космические рубежи теории относительности - страница 9

стр.

и абсолютно удалённое. Границы этих областей определяются мировыми линиями световых лучей, проходящих через точку «здесь и сейчас» в центре диаграммы. Смысл названий Этих трёх областей становится ясным, если вспомнить, что, согласно специальной теории относительности, движение со скоростью, превышающей скорость света в вакууме, невозможно. Например, из центра диаграммы легко попасть в точку, где стоит буква «щ» в слове «будущее». Времени пройдет много, а преодоленное расстояние будет малым, и скорость при таком путешествии будет меньше скорости света. Однако из этой вершины вам никак не удастся попасть к букве «б» в слове «где-нибудь», ибо для этого пришлось бы преодолеть огромное расстояние за весьма малое время, причем скорость движения превысила бы скорость света.

Поскольку невозможно двигаться со скоростью, равной или превышающей скорость света, в таком пространстве-времени разрешены только те мировые линии, наклон которых в любой их точке меньше 45° к вертикали. Это значит, что, выйдя из вершины в центре диаграммы, вы никогда не покинете области абсолютного будущего. Вам никогда не попасть в абсолютно удалённую область. Аналогично, чтобы оказаться в этой вершине, нужно отправиться в путь откуда-нибудь из области абсолютного прошлого. Однако всегда абсолютно удалённая область является для вас запретной.

РИС. 1.9. Три типа траекторий. Поскольку движение быстрее света невозможно, материальные тела движутся только по временноподобным линиям. Свет распространяется по светоподобным мировым линиям, а пространственноподобные пути запрещены.

Выяснив, в каких областях пространства-времени мы можем путешествовать, а какие нам недоступны, мы можем выделить три основных типа мировых линий (рис. 1.9). Из точки В можно попасть в точку П. Эта мировая линия составляет с вертикалью угол менее 45°, и требуется очень много времени, чтобы преодолеть небольшое расстояние, поэтому её называют временноподобной. Мировая линия, соединяющая точки С и П, имеет наклон, точно равный 45° относительно вертикали. Из описанного выше принципа построения диаграммы пространства-времени следует, что каждую секунду покрывается расстояние 300 000 км. Скорость космонавта, летящего из С в П, должна равняться скорости света, и поэтому такая мировая линия называется светоподобной. Наконец, наклон линии, соединяющей точки П и П, к вертикали превышает 45°. По такому «пути» за очень короткий срок во времени «проходится» огромный путь в пространстве, поэтому скорость должна превышать скорость света, и мировая линия называется пространственноподобной. Ниже в этой книге мы часто будем пользоваться такими диаграммами пространства-времени.

Всё вещество во Вселенной движется лишь по временноподобным мировым линиям в четырёхмерном пространственно-временном континууме. Из специальной теории относительности, как из всей совокупности наших знаний о Вселенной, следует, что невозможно разогнать вещество до скорости света или до скорости, превышающей её, поэтому светоподобные и пространственноподобные мировые линии всегда под запретом. Чтобы лучше разобраться в этом, познакомимся с основными представлениями специальной теории относительности.

2 ПРОСТРАНСТВО-ВРЕМЯ И СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Совершим небольшой экскурс в историю. Представим себе путь человечества за последние десять тысяч лет - от древнейших цивилизаций на берегах Инда и Евфрата до путешествий астронавтов с космических кораблей «Аполлон» по лунной поверхности. В этой ретроспективе выделяются события, течения и тенденции развития, имеющие решающее значение или важные последствия для человечества. Конечно, исторически важные события наиболее очевидны, к примеру изобретение письменности или взрыв атомной бомбы. Направления и тенденции развития событий, как правило, выявляются постепенно - например, упадок Римской империи или быстрый рост народонаселения на протяжении XX в.

Сегодня, оглянувшись вокруг, мы обнаруживаем, что открытие свойств и практическое применение электричества венчают список исторически важных событий. Электричество играет важную роль почти во всех сферах человеческой жизни: в быту и на работе, от средств связи до развлечений. А ведь каких-нибудь сто лет назад всё обстояло иначе. Вплоть до начала XIX в. электричество ассоциировалось с лейденскими банками, бумажным змеем Бенджамина Франклина и судорогой в руке, если взяться за дверную ручку, походив по толстому ковру. Лишь в начале XIX в. началось серьёзное экспериментальное изучение электричества. Важнейшими опытами, которые выявили фундаментальные свойства электричества, были, видимо, опыты Майкла Фарадея и Ганса Кристиана Эрстеда. Почти случайно было обнаружено, что электрический ток, текущий по проводу, генерирует магнитное поле. Действительно, если поместить карманный компас вблизи проводника, по которому течёт электрический ток, то стрелка компаса отклонится от направления на север. До этого открытия электричество и магнетизм считались совершенно несвязанными явлениями. Электричество ассоциировалось с молнией, а магнетизм - со странными свойствами некоторых железных руд. Однако благодаря работам Фарадея и Эрстеда стало очевидно, что эти два явления тесно связаны между собой. Оказалось, что всякий раз, когда приводятся в движение электрические заряды, возникает магнитное поле (рис. 2.1).