Математический аппарат инженера - страница 17
Умножение (m × n) — матрицы А на единичную матрицу m-го порядка слева и на единичную матрицу n-го порядка справа не изменяет этой матрицы, т.е. E>mA = AE>n = A. Если хотя бы одна из матриц произведения АВ является нулевой, то в результате получим нулевую матрицу.
Отметим, что из АВ = 0 не обязательно следует, что А = 0 или В = 0. В этом можно убедиться на следующем примере:
6. Транспонирование матрицы. Преобразование матрицы А, состоящее в замене строк столбцами ( или столбцов строками) при
- 34 -
сохранении их нумерации, называется транспонированием. Полученная в результате такого преобразования матрица называется транспонированной к матрице А и обозначается A>t или A':
Произвольная (m × n) — матрица при транспонировании становится ( n × m ) - матрицей, а элемент a>ij занимает ji — клетку, т.е. a>ij = a>t>ji.
Если матрица (квадратная) совпадает со своей транспонированной, т.е. A = A>t, то она называется симметричной и ее элементы связаны соотношением a>ij = a>ji (симметрия относительно главной диагонали). Матрица, для которой A = -A>t, называется кососимметричной, и ее элементы связаны соотношением a>ij = -a>ji . Она, как и симметричная матрица, всегда квадратная, но диагональные элементы равны нулю, т.е. a>i>i = 0 (i = 1, 2, ..., n). Ниже приведены примеры симметричной и кососимметричной матриц:
Ясно, что не все элементы таких матриц могут быть выбраны произвольно. Можно убедиться, что из n>2 элементов для симметричной матрицы независимыми могут быть только 1/2 n (n + 1), а для кососимметричной -1/2 n (n + 1) элементов.
- 35 -
Комплексно-сопряженная и транспонированная матрица (A)>t называется сопряженной с А и обозначается A*. Матрица, равная своей сопряженной, т.е. A = (A̅)>t = A*, называется эрмитовой. Если A = -(A̅)>t, то А — косоэрмитова матрица.
Легко показать, что транспонирование произведения АВ равно произведению транспонированных матриц, взятых в обратном порядке: (AB)>t = B>tA>t. Дважды транспонированная матрица равна исходной, т.е. (A>t)>t = A.
7. Матричная запись системы линейных уравнений. Первоначально матрицы были введены для упрощения записи систем линейных уравнений, что и обусловило и определение основных матричных операций. Система линейных уравнений:
записывается одним матричным равенством
Действительно, перемножив в правой части равенства ( m × n ) - матрицу на столбцевую матрицу, получим
- 36 -
Из равенства матриц-столбцов следуют равенства для соответствующих элементов, которые совпадают с исходной системой уравнений. Если обозначить
то матричное равенство запишется еще короче
y = Ax.
Такое представление системы линейных уравнений оказалось возможным благодаря правилу умножения матиц, которое наилучшим образом подходит для этой цели. Однако исторически дело обстояло как раз наоборот: правила действий над матрицами определялись, прежде всего, исходя из удобства представлений систем линейных уравнений.
8. Линейные преобразования. Систему уравнений, записанную в начале предыдущего пункта, можно рассматривать как линейное преобразование совокупности величин x>1, x>2, ..., x>n в совокупность y>1, y>2, ..., y>m. Это преобразование полностью определяется коэффициентами a>ij (i = 1, 2, ..., m; j = 1, 2, ..., n). На языке матриц линейное преобразование y = Ax означает преобразование столбца х в столбец у, которое определяется матрицей преобразования А.
Пусть величины x>1, x>2, ..., x>n получаются из некоторой совокупности величин z>1, z>2, ..., z>n посредством линейного преобразования x = Bz, где x и z — столбцы соответствующих величин; В — матрица их преобразования. Тогда формальной подстановкой х в первое матричное уравнение получаем
y = Ax = A(Bz) = (AB)z = Cz,
где C = AB — матрица преобразования величин z и y. К этому же результату можно прийти путем подстановки значений x>1, x>2, ..., x>n из второй системы уравнений в первую с учетом введенного ранее правила умножения прямоугольных матиц.
9. Обратная матрица. В обычной алгебре два числа, произведение которых равно единице, называют взаимно обратными. Число, обратное числу a обозначают через a>-1 и по определению aa