Математический аппарат инженера - страница 32

стр.

x>2 ... x>n, что означает a = x>1m>n-1 + x>2m>n-2 + ... + x>nm>0. Десятичная система использует цифры 0, 1, ..., 9, например: 2907 = 2·10>3 + 9·10>2 + 0·10>1 + 7·10>0. Для двоичной системы счисления достаточно двух цифр, которые обозначаются 0 и 1. При этом последовательность x>1x>2 ... x>n таких цифр является записью двоичного n-разрядного числа x>1·2>n-1 + x>2·2>n-2+ ... + x>n·2>0.

Перевод целых десятичных чисел в двоичные осуществляется последовательным делением исходного числа и каждого частного на два. Получаемые при этом остатки (0 или 1), записанные в обратном порядке, и дают представление десятичного числа в двоичной системе счисления. Например:


Действительно, проверяя полученный результат, получаем 1·2>4 + 1·2>3 + 0·2>2 + 1·2>1 + 0·2>0 = 16 +8+2 = 26.

Дробное число переводится в двоичную систему счисления методом последовательного умножения на два. При этом каждый раз


- 69 -


после запятой двоичного числа записывается 0 или 1 соответственно целой части результата умножения. Последовательное умножение продолжается до тех пор, пока дробная часть не обратится в нуль или пока не получим требуемое количество двоичных знаков после запятой. Например, двоичное представление числа 0,3125 получается следующим образом:



Проверка полученного результата дает: 0·2>-1 + 1·2>-2 + 0·2>-3 + 1·2>-4 = 1/4 +1/16 = 5/16 = 0,3125.

Если число является смешанным, т.е. его целая и дробная части отличны от нуля, то оно переводится в двоичную систему раздельно: целая часть- последовательным делением, а дробная — последовательным умножением.

Арифметические операции над числами сводятся к операциям сложения и умножения одноразрядных чисел. В двоичной системе счисления умножение задается таблицей конъюнкции: 0·0=0; 1·0=0; 0·1=0 и 1·1=1. Сложение выполняется по правилу: 0 + 0 = 0; 1+0=1; 0+1=1 и 1+1=10 (10 — это двоичное число, соответствующее десятичному числу 2). Операции над двоичными числами выполняются по правилам, аналогичными для десятичных чисел, но эти правила предельно упрощаются (особенно для умножения). Например, десятичные операции 41 + 27 = 68 и 41·5= 205 выглядят следующим образом:




- 70 -


Как видно, умножение двоичных чисел сводится к сложению чисел, образованных сдвигом влево первого сомножителя. Поразрядное сложение осуществляется в соответствии с таблицей

причем в случае x>1 = x>2 = 1 образуется единица переноса в старший разряд. Операция, задаваемая этой таблицей, называется сложением по модулю 2. Если при сложении перенос не учитывается, то эта операция вместе с операцией умножения определяет на множестве двоичных чисел арифметику по модулю 2.


Задачи и упражнения


1. Подстановкой в формулу a ∨ b переменных запишите новые формулы и упростите их, если это возможно: а) a = x̅y, b = z. б) a = xy, b = xy̅; в) a = x, b = xy; г) a = x, b = x̅y; д) a = xy, b = c ∨ d, c = xz, d = yz̅.

2. Запишите таблицы соответствия для следующих формул: а) xx̅; б) xy ∨ x̅; в) (p ∨ q)(p̅ ∨ q̅); г) x̅∨̅y̅.

3. Проверьте с помощью таблиц соответствия следующие тождества: а) x̅∨̅y̅ = x̅ y̅; б) x ( x ∨ y) = x; в) x ∨ x̅ y = x ∨ y.

4. Постройте переключательные схемы для обеих частей приведенных ниже тождеств и убедитесь в том, что эти схемы функционируют одинаково:

а) xy∨x̅y∨x̅y̅=y ∨ x̅y̅

б) (x∨y)(x∨z) = x ∨ yz;

в) xyz∨xyz̅∨xy̅ = x.

5. Упростите следующие формулы:

а) x̅yz∨xy̅z̅∨xyz̅;

б) xy∨z∨x̅y̅∨̅z̅(zv∨x);

в) xy̅z̅∨xyz̅∨x̅yz∨xyz;

г) (x∨y)(x̅y̅∨z)∨z̅∨(x∨y)(u∨v).

6. Комитет, состоящий из трех членов, принимает решения большинством голосов. Постройте такую схему, чтобы голосование каждого члена комитета производилось нажатием своей кнопки и чтобы лампочка загоралась, если и только если решение принято. Какое наименьшее количество ключей необходимо?

7. Постройте схему освещения так, чтобы лампочка могла независимо включаться и выключаться двумя выключателями.


- 71 -


8. Преобразуйте формулы к такому виду, чтобы операция отрицания применялась только к логическим переменным:


9. Убедитесь с помощью таблиц соответствия в справедливости выражений для импликации и эквиваленции:

а) x>1→ x>2 = x̅>1∨x>2;

б) x>1 ∼ x>2 = x>1x>2∨ x̅>1>2 = (x>1