Математический аппарат инженера - страница 33

стр.

∨x̅>2)(x̅>1∨x>2);

в) x>1 ∼ x>2 = ( x>1→ x>2 )( x>2→ x>1 ).

10. Постройте переключательные схемы для импликации и эквиваленции в соответствии с тождествами, приведенными в задаче 9.

11. Запишите формулу, соответствующую переключательной схеме рис. 25. Упростите эту формулу и постройте более простую схему.


Рис. 25. Граф переключательной схемы к задаче 11.

12. Постройте переключательные схемы по формулам:

а)(x>1 ∨ x>2>3)(x>1x>2 ∨ x>3x>4)

б) (x̅>1 (x>2 ∨ x̅>3) ∨ x̅>4)x>1.

13. Из простых высказываний x>1 - «испытания проведены» и x>2 - «программа выполнена» образуйте сложные высказывания по формулам а) x>1∨x̅>2; б) x>1x>2; в) x>1→ x>2 ; г) x>1 ∼ x>2.

14. Запишите формулы для следующих высказываний, обозначив буквами входящие в них простые высказывания:

а) Давление падает и система не работает.

б) Вычисления выполнены точно или конструкция несовершенна.

в) Проект разработал Андрей или Петр, а эксперимента выполнил Иван.

г) Если будет хорошая погода, мы отправимся на стадион или пойдем за грибами.

д) Программа может быть выполнена, если и только если материалы поступят своевременно.

е) Если я поеду на автобусе, то опоздаю на работу или я воспользуюсь такси.

ж) Андрей помогает Петру или Петр помогает Андрею, или они помогают друг другу.

15. Запишите формулу, соответствующую высказыванию: «Программа будет выполнена тогда и только тогда, когда закончатся испытания и показатели будут удовлетворительны; если программа не будет выполнена, сотрудники не получат премию или будут пересмотрены технические условия».

16. Даны простые высказывания: x>1 - «идет дождь), x>2 - «очень жарко».

а) Запишите формулу сложного высказывания «Неверно, что идет дождь и очень жарко».

б) Преобразуйте формулу по закону де Моргана и составьте соответствующее высказывание.

в) Убедитесь в тожественности исходного и преобразованного высказываний.

17. Путешественник остановился у развилки дорог, ведущих в пункты А и В, и ему нужно выяснить, в какой именно пункт ведет каждая из дорог. Находившиеся у развилки два человека заявили, что они могут ответить только на один вопрос и что один из них всегда правдив, а другой лжец. Какой вопрос должен задать путешественник, чтобы в любом случае ответ на него содержал необходимою информацию?

а) Решите задачу путем непосредственных рассуждений без применения алгебры логики.


- 72 -


б) Представьте ситуацию в виде сложного высказывания, составленного из простых.

в) Запишите соответствующую формулу и таблицу соответствия.

г) По таблице соответствия сформулируйте искомый вопрос.

18. Высказывание является логически истинным, если соответствующая ему формула тождественно равна единице, и логически ложным, если формула равна нулю. Определите с помощью таблиц соответствия, каким высказываниям соответствуют приведенные ниже формулы (истинным, ложным или ни тем и не другим): а) p ∼ p; б) p → p̅; в)(p∨q) ∼ pq; г)(p→q̅) → (q → p̅); д)(p→ q)→ p; е) ((p→ q)→ p)→ p; ж) p̅∨̅q̅ ∼ pq .

19. При x>1 = 1; x>2 = 0; x>3 = 0 и x>4 = 1 найдите значения каждой из следующих функций:


20. Пусть X — множество сотрудников отдела и на этом множестве определены относительно переменной x ∈ X одноместные предикаты P(x), Q(x), R(x), означающие соответственно: x — занимается спортом, изучает иностранный язык, имеет изобретения. Расшифруйте предикаты, образованные с помощью следующих логических операций: а) P(x) ∨ Q(x); б) P(x) Q(x); в) P̅(x) Q(x); г) Q(x) ∼ P(x); д) P̅(x)∼ (Q(x) ∨ R(x)).

21. Пусть V — множество вершин и E — множество ребер графа, причем ребро e ∈ E соединяет вершины x,y ∈V. Что означают предикаты P(x,y), Q(e, x, y), R(x,e)?

22. Каким десятичным числам соответствуют следующие двоичные числа: а) 1011; б) 1000110; в) 110100111?

23. Переведите в двоичную систему счисления десятичные числа: а) 51; б) 64; в) 125; г) 1000.

24. Выполните в двоичной системе следующие операции над десятичными числами: 21 + 37; 31 + 105; в) 25 · 8; г) (8 + 19) · 11; д) 24 · 8 — 17. Проверьте полученные результаты в десятичной системе.

25. Переведите в двоичную систему счисления с точностью до пяти двоичных знаков после запятой числа: а) 0,131; б) 0,25; в) 175,26.