О неслышимых звуках - страница 23
Молекула перекиси водорода содержит на один атом кислорода больше, чем молекула воды. Азотная кислота — довольно сложное соединение, в ее состав входят азот, кислород и водород.
Образование перекиси водорода является одной из главных причин окислительного действия ультразвука, такого, например, как разложение иодистого калия.
Разложение иодистого калия нашло себе недавно интересное применение: с его помощью удалось сделать ультразвуковые волны видимыми.
Для этой цели приготовляют специальный звукочувствительный раствор, содержащий крахмал, иодистый калий, а также незначительное количество других веществ, повышающих чувствительность раствора к звуку.
Под действием ультразвука из иодистого калия выделяется свободный иод, иод взаимодействует с крахмалом, и вся жидкость приобретает темно-синюю окраску.
Если приготовить из тончайшей пластической массы набор ячеек наподобие пчелиных сот и наполнить их звукочувствительным раствором, мы получим ультразвуковой растр. Теперь можно следить за распространением ультразвука, расположив растр на его пути. Там, где ультразвук будет проникать в ячейки, он будет вызывать появление окраски, так что границы ультразвукового луча будут резко очерчены.
На рис. 27 приведена фотография ультразвуковой волны (темный прямоугольник).
Если на пути ультразвука поместить преграду — обычную пробку, то она отбросит звуковую тень. В ячейках растра, попавших в область тени, иод не будет выделяться и раствор не посинеет. На рис. 28 приведена фотография подобной звуковой тени (светлый прямоугольник) на фоне посиневшего от действия ультразвука растра.
Первоначально все химические действия ультразвука пытались объяснить какой-нибудь одной причиной, но попытка эта успеха не имела. При распространении ультразвука в жидкости возникает ряд явлений, каждое из которых может быть причиной химических превращений.
Электрический разряд в кавитационных пузырьках не является единственной причиной химических действий ультразвука. При захлопывании кавитационных пузырьков, как мы знаем, возникают огромные давления, которые измеряются тысячами атмосфер. Подобное увеличение давления сопровождается значительным повышением температуры. Большие давления и температуры, хотя и ограничены микроскопическими объемами жидкости, все же могут вызывать химические превращения.
Большое значение имеют также колебания мельчайших пузырьков воздуха, резонансные частоты которых совпадают с частотой звуковой волны.
Недавно удалось доказать, что ультразвук может вызывать некоторые химические превращения и в отсутствие кавитации, только действие его в этом случае значительно ослабляется.
В последние годы и в технике и в быту широкое распространение приобрели предметы, сделанные из каучука и различных пластических масс. Молекулы этих веществ отличаются очень большими размерами. Они так и называются: макромолекулы, или молекулы-гиганты. Макромолекулы возникают в результате полимеризации — соединения большого количества более мелких молекул.
Полимеризация — одна из важнейших реакций в химической промышленности. В некоторых случаях она протекает только в присутствии особых сочетаний атомов, так называемых свободных радикалов. Поскольку ультразвук, как мы уже знаем, вызывает появление свободных радикалов, возникла мысль: а нельзя ли воспользоваться им для ускорения реакции полимеризации? Недавно это предположение удалось подтвердить опытами.
Для исследования было выбрано вещество, молекулы которого способны укрупняться только в присутствии радикалов. Специальной очисткой был приготовлен водный раствор этого вещества, который не содержал радикалов. Раствор простоял шесть месяцев и не изменился. Но стоило его подвергнуть действию мощного ультразвука, как раствор заполимеризовался.
У читателя, естественно, возникает вопрос: каким же образом удается следить за изменением размеров молекул, которые так малы, что их нельзя увидеть даже в самый лучший микроскоп?
В этом случае на помощь ученым приходит зависимость, которая существует между вязкостью раствора и размером молекул.