Параллельный перенос вектора. Критика - страница 6

стр.

В заключение рассмотрим ещё одну аргументацию, аналитическую, которая приводит к ожидаемому расхождению направлений просто как следствие вычислений.

"Весьма существенно, что в кривом пространстве параллельный перенос вектора из одной заданной точки в другую дает разные результаты, если он совершается по разным путям. В частности, отсюда следует, что если переносить вектор параллельно самому себе по некоторому замкнутому контуру, то он, возвратившись в первоначальную точку, не совпадет с самим собой.

Для того чтобы уяснить это, рассмотрим двухмерное искривленное пространство, т. е. какую-нибудь кривую поверхность. На рис.19 изображен фрагмент такой поверхности, ограниченный тремя геодезическими линиями. Подвергнем вектор 1 параллельному переносу вдоль контура, образованного этими линиями. При передвижении вдоль линии АВ вектор 1, сохраняя все время одинаковый угол с этой линией, перейдет в вектор 2. При передвижении вдоль ВС он таким же образом перейдет в 3. Наконец, при движении из С в А вдоль кривой СА, сохраняя постоянный угол с этой кривой, рассматриваемый вектор перейдет в 1', не совпадающий с вектором 1.



Выведем общую формулу, определяющую изменение вектора при параллельном переносе вдоль бесконечно малого замкнутого контура. Это изменение ΔА>k можно записать в виде



где интеграл берётся по данному контуру. Подставляя вместо δА>k выражение (85.5), имеем



стоящий под интегралом вектор А>i меняется по мере его переноса вдоль контура" [9, с.349].

Сначала отметим очевидную, на наш взгляд, ошибку на рисунке: штрихом должен быть обозначен вектор 1, направленный вертикально. Нетрудно заметить, что этот рисунок практически тождественен нашему рис.2a. Следовательно, если, как и там, мы здесь также "срежем" верхушку траектории в точке A, то сразу же обнаружим, что вектор на самом деле не вернулся в исходную точку!



Рис.7. Перенос вектора в искривлённом 2-мерном пространстве по замкнутой траектории не меняет его направления при возвращении в исходную точку


На рис.7 мы исправили отмеченную выше неточность в обозначениях векторов в точке А. Добавленная траектория красного цвета отчётливо показала, что в исходном варианте вектор 1' на самом деле не вернулся в исходную точку А. Новая обойденная вектором поверхность пространства подкрашена голубоватым цветом. Возвращение в исходную точку оказалось иллюзией, поскольку все промежуточные положения вектора вблизи точки A на самом деле слились в ней воедино, при этом соответствующие им направления отображены не былы. С нашими исправлениями видно, что из исходной точки A' вектор проходит, как и в исходном варианте, через точки B и С. Однако конченой точкой при перемещении вектора 3 является теперь не исходная точка A', а точка A''. Следовательно, в этой точке вектор 1' и не должен совпадать по направленю с ветором 1 (малинового цвета). Чтобы вернуться в действительно исходную точку этот вектор 1' должен пройти ещё ряд промежуточных положений – 1'', 1''', 1''''. Только после этого он окажется в непосредственной близости от исходной точки A'. Теперь уже ему ничто не мешает слиться с исходным направлением вектоора 1 (малинового) в действительно исходной точке A'.

Выводы

Из приведённых доводов прямо следует: параллельный перенос вектора в рамках пространства не позволяет получить информацию о кривизне пространства, в частности, на поверхности сферы. Несложно обнаружить, что подобное несоответствие возникает и на поверхности тора, и догадаться, что это справедливо в отношении любой искривленной поверхности. Но как же тогда следует относиться к строгим аналитическим выкладкам и доказательствам возможности этого? Ответ содержится в приведенном анализе. Как в аналитических выкладках, так и в графических примерах при параллельном переносе вектор не возвращен в исходное положение, поэтому и сохраняет параметры последнего участка траектории.

Кроме того, возникает весьма серьёзная проблема. Если тензорный формализм приводит к такому результату, изменению направления вектора при его переносе в криволинейном пространства, то неизбежно следует один из двух выводов. Если теория даёт некий вывод, не соответствующий реальному положению вещей, то такая теория не может быть верной. Даже если она тензорная. С другой стороны, если считать её всё-таки верной, безупречной, то такое расхождение с реальными фактами может быть следствием некорректного использования теории.