Приключения математика - страница 14

стр.

Во время одной из бесед в кафе Мазур предложил первые примеры бесконечных математических игр. Я помню также (это было, скорее всего, в 1929 или 1930 году), что он поднял вопрос о существовании автоматов, которые обладали бы способностью к копированию самих себя при наличии некоторого наполнителя. Мы обсуждали это весьма отвлеченно, но некоторые из наших идей, которые мы никогда не записывали, практически предопределили будущие теории, такие, как теория абстрактных автоматов фон Неймана. Часто мы размышляли над возможностью создания компьютеров, способных выполнять числовые операции, связанные с исследованиями, и даже формальные алгебраические вычисления.

Я уже упомянул о том, что впервые увидел Банаха, посетив серию математических лекций во время учебы в средней школе. В то время Банаху было за тридцать, но, вопреки впечатлению, которое обычно складывается у молодых о людях, которые на пятнадцать или двадцать лет старше их, мне он показался очень моложавым. Он был голубоглазым блондином, высоким, с довольно тучной фигурой. Его манера говорить впечатлила меня своей открытостью, убедительностью и явной бесхитростностью (особенность, которая, как я заметил, была в какой-то мере напускной). Выражение его лица обыкновенно выдавало хорошее расположение духа в сочетании с определенной долей скептицизма.

Банах происходил из бедной семьи и почти не получил того общепринятого школьного образования. Он был по большей части самоучкой, когда пришел в стены Политехнического института. Говорили, что Штейнгауз совершенно случайно узнал о таланте Банаха, подслушав разговор двух молодых студентов, сидевших на скамейке в парке и обсуждавших математические вопросы. Одним из них был Банах, другим — Никодим, который недавно ушел с поста профессора математики Кеньонского колледжа. Впоследствии Штейнгауза и Банаха ожидало очень тесное сотрудничество и совместное основание Львовской математической школы.

Познания Банаха в математике были обширными. Он внес свой вклад в теорию функций вещественных переменных, теорию множеств, функциональный анализ, теорию бесконечномерных пространств (точки этих пространств являются функциями или бесконечными числовыми рядами). Некоторые его результаты были воистину изящны. Как-то он сказал мне, что в молодости знал все три тома «Дифференциальной геометрии» Дарбу.

Я побывал лишь на нескольких лекциях Банаха. Особенно мне запомнились его доклады на тему вариационного исчисления. В основном его выступления не были как следует подготовлены. Иногда он ошибался или пропускал что-то. Наиболее увлекательно было наблюдать за тем, как он работал у доски, пытаясь устранить свою оплошность и неизменно справлялся с этим. Я всегда находил такие выступления гораздо более увлекательными по сравнению с теми безукоризненными лекциями, во время которых мое внимание, бывало, окончательно переключалось на другие вещи и возвращалось к докладчику, лишь когда я чувствовал, что тот попал впросак. Начиная с третьего курса учебы, почти все идеи моих работ по математике созревали под влиянием бесед с Мазуром и Банахом. Банах говорил, что некоторые из моих работ отличались «необычностью» в постановке задач и обзоре возможных доказательств. Однажды, несколько лет спустя, он сказал мне, что его поражало то, насколько часто эти «необычные» подходы оправдывали себя. Слова эти из уст великого ученого в адрес молодого человека двадцати восьми лет были, наверное, величайшей из всех когда-либо заслуженных мною похвал.

Что же касается способностей Банаха, то будь то математическая дискуссия или короткое замечание на какую-то общую тему — во всем почти сразу можно было почувствовать огромную силу его ума. Он трудился с огромным напряжением, но в какие-то моменты прекращал работу и некоторое время пребывал в кажущемся бездействии. Но и в эти промежутки времени его мозг продолжал работать над отбором тех утверждений — своего рода пробных шаров — которые могли бы наилучшим образом послужить в качестве основных теорем в какой-нибудь последующей области изучения.

Он любил вести длинные математические дискуссии с друзьями и студентами. Я вспоминаю одно наше «заседание» в Шотландском кафе с Мазуром и Банахом, продолжавшееся семнадцать часов подряд, когда мы прерывали нашу беседу лишь для того, чтобы перекусить. Более всего меня вдохновляло то, как он мог обсуждать математические вопросы, обосновывать их и находить доказательства в ходе таких бесед.