Примени математику - страница 15
3.5. Возведем каждое из целых чисел от 0 до 9 в пятую степень:
Заметим, что каждое из полученных в результате чисел оканчивается той же цифрой, что и соответствующее основание пятой степени. Тот же вывод можно распространить и на случай, когда основанием пятой степени является многозначное целое число, поскольку последняя цифра результата при этом полностью определяется последней цифрой основания степени.
Теперь при извлечении корня пятой степени из данного числа в предположении, что этот корень извлекается нацело, очень легко определяется последняя цифра корня - она просто совпадает с последней цифрой данного числа. Например, последняя цифра корня
Аналогично легко определяется последняя цифра 3 корня
20>5 = 32'00000≤64'36343≤243'00000 = 30>5, из которых следует, что искомый корень удовлетворяет неравенствам
Поэтому первая его цифра не может быть никакой другой цифрой, кроме 2. Следовательно, сам корень равен 23, что подтверждается непосредственной проверкой возведением его в пятую степень.
3.6. Возведем каждое из целых чисел от 0 до 9 в куб:
Заметим, что все полученные в результате числа оканчиваются разными цифрами. Проанализировав, какими именно цифрами они оканчиваются, заключаем, что последняя цифра куба любого целого числа либо совпадает с последней цифрой основания (если эта цифра есть 0, 1, 4, 5, 6 или 9), либо совпадает с дополнением последней цифры основания до 10 (если эта цифра есть 2, 3, 7 или 8).
Таким образом, последняя цифра числа
Итак, искомый корень равен 14, что подтверждается проверкой.
Наконец, аналогично находим, что последняя цифра числа
3.7. В отличие от случаев с нечетными степенями, рассмотренных в задачах 3.5 и 3.6, последняя цифра целого числа, вообще говоря, не восстанавливается однозначно по последней цифре его квадрата. Действительно, одинаковыми цифрами оканчиваются квадраты чисел, взаимно дополняющих друг друга до 10:
Но "индивидуальными" цифрами оканчиваются квадраты 0>2 = 0, 5>2 = 25. Таким образом, последняя цифра числа
Поэтому искомый корень может быть равен только 95, что и оказывается верным.
Менее простым для вычисления является корень квадратный из числа 3249. Первая цифра этого корня равна 5, так как 5>2 = 25≤32<36 = 6>2, а вторая, если искомое число целое, равна либо 3, либо 7, т. е. вторая цифра либо меньше 5, либо больше 5. Но это можно проверить, сравнив число
55>2 = 5*6*100 + 25 = 3025<3249 вытекает, что искомый корень больше 55, а значит, равен 57, что подтверждается проверкой.
Для нахождения числа
12>2 = 144≤158<169 = 13>2. Итак, искомый корень трехзначен, начинается цифрами 1, 2, а кончается либо цифрой 4, либо цифрой 6. Так как этот корень больше числа 125, что следует из оценки
125>2 = 12*13*100 + 25 = 15 625<15 876, то он равен 126.
3.8. Подсчет показывает (см. решение задачи 3.6), что остатки от деления на 11 кубов целых чисел от 0 до 10 равны соответственно 0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10. Анализ этих остатков показывает, что все они различны и по ним однозначно восстанавливаются соответствующие основания кубов. Поэтому, зная остаток от деления на 11 данного числа, из которого нацело извлекается корень кубический, можно определить остаток от деления на 11 этого корня. Если мы знаем первую и последнюю цифры трехзначного корня кубического (а именно таким он должен оказаться в условиях задачи), то средняя цифра этого корня определяется остатком от его деления на 11.