Теорема века. Мир с точки зрения математики - страница 3

стр.

Конечно, можно добраться до аксиом, которые лежат в источнике всех этих рассуждений. И если, с одной стороны, держаться того мнения, что их нельзя свести к закону противоречия, с другой – не желать видеть в них только факты опыта, которые не могли бы обладать характером математической необходимости, то имеется еще надежда отнести их к числу синтетических априорных суждений. Но это не значит разрешить затруднение; это значит только дать ему название: даже если бы природа синтетических суждений перестала быть для нас тайной, все же противоречие не было бы устранено, оно было бы только отодвинуто; силлогистическое умозаключение неспособно прибавить что-либо к тем данным, которые ему предоставляются; эти данные сводятся к нескольким аксиомам, и, кроме них, ничего нового нельзя было бы найти в заключениях.

Никакая теорема не должна была бы являться новой, если в ее доказательство не входила бы новая аксиома; умозаключение могло бы только возвращать нам истины, непосредственно очевидные, имеющие источником интуицию; оно являлось бы только промежуточным пустословием. Тогда, пожалуй, возник бы вопрос: не служит ли вообще силлогистический аппарат единственно для того, чтобы маскировать делаемые нами заимствования?

Противоречие поразит нас еще больше, если мы откроем какую-нибудь математическую книгу: на каждой странице автор будет выражать намерение обобщить уже известную теорему. Значит ли это, что математический метод ведет от частного к общему, и каким образом можно называть его тогда дедуктивным?

Наконец, если бы наука о числе была чисто аналитической или могла вытекать аналитически из небольшого числа синтетических суждений, то достаточно сильный ум мог бы, по-видимому, с первого взгляда заметить все содержащиеся в них истины; более того: можно было бы даже надеяться, что когда-нибудь для их выражения будет изобретен язык настолько простой, что эти истины будут непосредственно доступны и заурядному уму.

Если отказаться от допущения этих выводов, то необходимо придется признать, что математическое умозаключение само в себе заключает род творческой силы и что, следовательно, оно отличается от силлогизма.

И отличие это должно быть глубоким. Так, например, мы не найдем ключа к тайне в многократном применении того правила, по которому одна и та же операция, одинаково примененная к двум равным числам, дает тождественные результаты.

Все эти формы умозаключения – все равно, приводимы ли они к силлогизму в собственном смысле или нет, – сохраняют аналитический характер и поэтому являются бессильными.

II

Вопросы этого рода обсуждаются давно. Еще Лейбниц пытался доказать, что 2 да 2 составляют 4; рассмотрим вкратце его доказательство.

Я предполагаю, что определены число 1 и операция x + 1, состоящая в прибавлении 1 к данному числу x. Эти определения, каковы бы они ни были, не будут входить в последующие рассуждения.

Я определяю затем числа 2, 3 и 4 равенствами:

(1) 1 + 1 = 2; (2) 2 + 1 = 3; (3) 3 + 1 = 4.

Я определяю также операцию x + 2 соотношением

(4) x + 2 = (x + 1) + 1.

Установив это, мы имеем

2 + 2 = (2 + 1) + 1 (определение (4)),

(2 + 1) + 1 = 3 + 1 (определение (2)),

3 + 1 = 4 (определение (3)),

откуда

2 + 2 = 4 (что и требовалось доказать).

Нельзя отрицать того, что это рассуждение является чисто аналитическим. Но спросите любого математика, и он вам скажет: «Это, собственно говоря, не доказательство, а проверка». Мы просто ограничились сближением двух чисто условных определений и констатировали их тождество; ничего нового мы не узнали. Проверка тем именно и отличается от истинного доказательства, что, будучи чисто аналитической, она остается бесплодной. Она бесплодна, потому что заключение есть только перевод предпосылок на другой язык. Истинное же доказательство, наоборот, плодотворно, ибо в нем заключение является в некотором смысле более общим, чем посылки.

Равенство 2 + 2 = 4 могло подлежать проверке только потому, что оно является частным случаем. Всякое частное выражение в математике всегда может быть таким образом проверено. Но если бы математика должна была сводиться к ряду таких проверок, то она не была бы наукой. Ведь шахматист, например, не создает еще науки тем, что он выигрывает партию. Всякая наука есть наука об общем.