Теорема века. Мир с точки зрения математики - страница 4

стр.

Можно даже сказать, что точные науки имеют своей задачей избавить нас от необходимости таких прямых проверок.

III

Итак, посмотрим на математика за его делом и постараемся объяснить себе успешность его приемов. Задача эта не лишена трудностей; недостаточно открыть случайно попавшееся сочинение и проанализировать там какое-нибудь доказательство.

Мы должны прежде всего исключить геометрию, где вопрос усложняется трудными задачами, относящимися к роли постулатов, к природе и к происхождению понятия пространства. По аналогичным основаниям мы не можем обращаться и к анализу бесконечно малых. Нам надо искать математическую мысль там, где она осталась чистой, т. е. в арифметике.

Надо еще продолжить отбор; в высших отделах теории чисел первоначальные математические понятия подверглись столь глубокой разработке, что становится трудно их анализировать.

Следовательно, именно в началах арифметики мы должны надеяться найти искомое объяснение; но как раз в доказательстве наиболее элементарных теорем авторы классических сочинений обнаружили меньше всего точности и строгости. Не надо ставить им это в вину; они подчинялись необходимости; начинающие не подготовлены к настоящей математической строгости; они усмотрели бы в ней только пустые и скучные тонкости; было бы бесполезной тратой времени пытаться скорее внушить им большую требовательность; надо, чтобы они быстро, без остановок, прошли путь, который некогда медленно проходили основатели науки.

Почему же нужна столь продолжительная подготовка, чтобы привыкнуть к этой совершенной строгости, которая, кажется, должна была бы быть от природы присущей всякому нормальному уму? Это логическая и психологическая проблема, которая достойна обсуждения.

Но мы не будем останавливаться на ней; она является посторонней для нашего предмета. Я буду лишь помнить, что нам надо, из опасения не достигнуть цели, привести заново доказательства наиболее элементарных теорем и вместо той грубой формы, которую им придают, чтобы не утомить начинающих, придать такую, которая может удовлетворить ученого-математика.

Определение сложения. Я предполагаю, что предварительно была определена операция x + 1, состоящая в прибавлении числа 1 к данному числу x. Это определение, каково бы оно ни было, не будет играть никакой роли в последующих рассуждениях.

Дело идет теперь об определении операции x + a, состоящей в прибавлении числа a к данному числу x.

Предположим, что определена операция

x + (а − 1).

Тогда операция x + а будет определена равенством

x + а = [x + (а − 1)] + 1. (1)

Таким образом, мы узнаем, что такое x + а, когда будем знать, что такое x + (а − 1); а так как я вначале предположил, что известно, что такое x + 1, то можно определить последовательными «рекурренциями» операции x + 2, x + 3 и т. д.[2]

Это определение заслуживает некоторого внимания, так как оно имеет особенную природу, отличающую его от определения чисто логического; в самом деле, равенство (1) содержит бесчисленное множество различных определений, и каждое из них имеет смысл только тогда, когда известно другое, ему предшествующее.

Свойства сложения. Ассоциативность. Я утверждаю, что

а + (b + с) = (а + b) + с.

В самом деле, теорема справедлива для c = 1; в этом случае она изображается равенством

а + (b + 1) = (a + b) + 1.

А это – помимо различия в обозначениях – есть не что иное, как равенство (1), при помощи которого я только что определял сложение.

Предположим, что теорема будет справедлива для с = γ; я говорю, что она будет справедлива и для c = γ + 1; пусть, в самом деле,

(а + b) + γ = а + (b + γ);

отсюда следует

[(a + b) + γ] + l = [a + (b + γ)] + l

или в силу определения (1)

(а + b) + (γ + l) = a + (b + γ + 1) = a + [b + (γ + 1)],

а это показывает с помощью ряда чисто аналитических выводов, что теорема верна для γ + 1.

Но так как она верна для с = 1, то последовательно усматриваем, что она верна для с = 2, для с = 3 и т. д.

Коммутативность. 1. Я утверждаю, что

a + 1 = 1 + a.

Теорема, очевидно, справедлива для а = 1 путем чисто аналитических рассуждений можно проверить, что если она справедлива для