Том 28. Математика жизни. Численные модели в биологии и экологии - страница 10
В биологии, как и в других науках, наиболее полезны математические модели: они в абстрактной форме представляют систему или явление с использованием языка и формальных средств математики. К примеру, в модели клетки, сердца или экосистемы составные части объекта и взаимодействие между ними представлены математическими выражениями. Эти выражения связывают множество входных переменных I>1, I>2, …, I>n и выходную переменную О. Входные переменные обозначают величины, которые можно наблюдать (и измерить) в ходе эксперимента. Обычно одна из этих переменных — время, t. Она обозначает момент времени, в который были получены входные значения I>1(t), I>2(t), …, I>n(t). Как только эти значения определяются экспериментально или любым другим способом (например, на основе каких-либо теоретических предпосылок), они вводятся в модель. Используя математические выражения модели, ученый определяет значение выходной переменной O(t), которое отражает какое-либо свойство системы. Обычно этим свойством является состояние или поведение системы в определенный момент времени t.
В математических выражениях используются параметры. В отличие от входных и выходных переменных, они обозначают величины, которые нельзя наблюдать в ходе эксперимента напрямую, например уровень рождаемости, константа распада, скорость биохимической реакции и т. д. Как следствие, значения параметров устанавливаются в лаборатории или при полевых исследованиях.
Для определения приближенного значения параметра используются сложные статистические методы. Однако иногда это значение уже известно: его можно найти в таблицах, опубликованных другими исследователями. В качестве примера можно привести калорийность продуктов в модели, связанной с диетами. Другие известные параметры — это сезонный уровень заболеваемости гриппом или время роста культуры бактерий. Параметры связывают входные переменные I>1(t), I>2(t), …, I>n(t) с выходной переменной O(t) посредством выражений математической модели.
Математическая модель, входные переменные (I) и выходная переменная (О).
Моделирование — одно из основных понятий современной науки — заключается в прогнозировании будущего состояния системы, O(t + 1), на основе определенной вычислительной модели. К примеру, прогноз погоды на ближайшие дни основан на вычислительной модели климата, прогнозирование численности волков и зайцев в определенном регионе производится на основе модели «хищник — жертва», а число людей, которые заболеют сезонным гриппом, можно спрогнозировать с помощью вычислительной модели эпидемии гриппа. Таким образом, для составления прогнозов требуется вычислительная модель.
В общем случае такая модель — это компьютерная программа, написанная на одном из языков программирования (Visual Basic, С/C++, Java и т. д.). Моделирование заключается в том, чтобы заставить математическую модель работать на компьютере в поисках ответа на вопросы, касающиеся будущего состояния системы: «что произойдет, если…?». Таким образом, компьютер превращается в пробирку, подлинную лабораторию, где можно исследовать явления, которые нельзя изучить при полевых исследованиях или в лаборатории.
Существует несколько способов компьютерного моделирования. Во-первых, оно может заключаться в определении начальных условий и будущего состояния системы. Начальные условия — это значения входных переменных модели (они известны), на основе которых выполняется прогноз. Ученые называют отправную точку модели нулевым моментом времени, поэтому начальные условия записываются так: I>1(0), I>2(0)…, I>n(0). К примеру, если на сегодняшний день свиным гриппом заболели 1247 человек, из которых 1240 выжили, семь — умерли, то начальные условия таковы: I>1(0) = 1247, I>2(0) = 1240 и I>3(0) = 7. Зная эти начальные условия и применив вычислительную модель эпидемии, можно задаться вопросом: сколько человек заболеют гриппом через семь дней?
Во-вторых, моделирование может заключаться в изменении параметров и оценке воздействия новых значений на будущее состояние системы. Что произойдет в примере со свиным гриппом, если вместо уровня смертности в 0,78 % использовать значение в 2,96 %? Каким в этом случае будет уровень смертности через месяц?