Том 28. Математика жизни. Численные модели в биологии и экологии - страница 14
Экземпляр моллюска Conus Textile. Рисунки на его раковине напоминают узор, получаемый при рассмотрении клеточного автомата, который описывается правилом 30.
* * *
В игре «Жизнь» каждый конечный автомат имеет восемь соседей, расположенных выше, ниже, справа, слева и по диагоналям от нее. Будем считать, что каждый конечный автомат имеет всего два возможных состояния — 0, или «мертв», и 1, или «жив», — которые мы будем обозначать разными цветами. Суть игры в том, чтобы последовательно определять состояния конечных автоматов по установленным правилам перехода.
Правило № 1: Будущее состояние конечного автомата равно предыдущему, если число соседей конечного автомата в состоянии 1 равно 2.
Правило № 2: Конечный автомат переходит из состояния 0 в состояние 1, если число его соседей в состоянии 1 равно 3.
Правило № 3: Третье правило моделирует соседство с большим или малым числом «живых» автоматов, то есть автоматов в состоянии 1. Если число соседних автоматов в состоянии 1 меньше 2, то есть 1 или 0, либо больше 3, то есть 4, 3, 6, 7 или 8, то конечный автомат «умирает», то есть переходит из состояния 1 в состояние 0.
Последовательно применяя правила перехода для всех конечных автоматов клеточного автомата, мы увидим, как в процессе эволюции постепенно появляются характерные шаблоны и фигуры.
Модель «хищник — жертва» и клеточные автоматы
Модель «хищник — жертва» Лотки — Вольтерры стала одной из первых математических моделей в биологии и, возможно, одной из самых важных в математической биологии. Как мы уже отмечали, одно из преимуществ клеточных автоматов заключается в том, что для их использования не требуется знать дифференциальное уравнение, описывающее явление или систему. Модель «хищник — жертва» Лотки — Вольтерры была представлена в 1984 году Александром Дьюдени в статье «Акулы и рыбы ведут экологическую войну на тороидальной планете Ва-Top» (Shark and Fish Wage an Ecological War on the Toroidal Planet Wa-Tor). He используя ни одно из уравнений, представленных Лоткой и Вольтеррой, Дьюдени получил похожие результаты на компьютере со стандартными для 1980-х годов характеристиками.
Целью Дьюдени было найти подходящие значения параметров модели, допускавшие сосуществование на небольшой решетке популяции хищников (акул) и жертв (рыб).
Дьюдени рассмотрел следующие параметры:
— число жертв (рыб);
— временной порог размножения рыб: если рыба выживает в течение определенного числа циклов (или заранее установленного времени моделирования) и ячейка остается свободной, в ней рождается рыба;
— число хищников (акул);
— максимальное время голодания хищников: если акула не может поймать рыбу в течение определенного числа циклов (или заранее установленного времени моделирования), она умирает;
— временной порог размножения акул: этот параметр определяется аналогично соответствующему параметру для рыб, однако значения этих параметров необязательно совпадают.
Фрагмент статьи Александра Дьюдени, посвященной модели «хищник — жертва» и опубликованной в декабрьском номере американского журнала Scientific American за 1984 год.
Клеточный автомат модели имеет тороидальную форму, выбранную для того, чтобы устранить границы решетки и обеспечить схожесть с настоящим морем. Ячейки имеют всего три состояния: 1) в ячейке находится рыба, 2) в ячейке находится акула, 3) ячейка свободна. Рыбы (цветные ячейки) «плавают» случайным образом в направлении одной из четырех соседних ячеек (на север, юг, запад или восток), если одна из них или более свободны (не имеют цвета). Акула «съедает» рыбу, если они находятся в смежных ячейках. Если в соседних ячейках нет рыбы, акула плывет в свободную ячейку.
Динамика эксперимента аналогична той, что описывается уравнениями модели «хищник — жертва» Лотки — Вольтерры. Если акул немного, численность рыб быстро увеличивается. С увеличением числа рыб численность акул также возрастет, что ведет к постепенному снижению числа рыб. В зависимости от численности акул и их расположения на тороидальной решетке рыбы могут полностью исчезнуть. В этом случае популяция акул в отсутствие пищи, то есть рыб, также быстро вымрет. Какими должны быть условия сосуществования акул и рыб, необходимые для сохранения обеих популяций? Приглашаем читателя поиграть с моделью Ва-Тор и самостоятельно определить наиболее подходящие параметры.