Универсалы - страница 14
, рассказал мне в 2017 году Джулиан Тогелиус – профессор Нью-Йоркского университета, изучающий искусственный интеллект в играх. Даже когда компьютеру удавалось победить человека, те в конечном счете выходили вперед за счет «долгосрочной адаптивной стратегии».
«Существует огромное множество слоев мышления, – говорит он. – Люди одинаково плохо понимают каждый из них в отдельности, но в то же время мы имеем приблизительное представление обо всех этих слоях, можем сочетать их, и таким образом адаптироваться к различным ситуациям. А ведь именно в этом и заложен ключ к разгадке».
В 2019 году искусственный интеллект впервые одержал победу над профессиональным геймером в ограниченной версии StarCraft (правда, игрок адаптировался и в конце концов победил). Однако из стратегической сложности игры можно извлечь один очень важный вывод: чем глобальнее общая картина, тем более уникальным является потенциальный вклад человека. Наша величайшая сила состоит в прямой противоположности узкой специализации. Это способность широкой интеграции. По словам Гэри Маркуса, профессора психологии и нейробиологии, продавшего свою компанию по обучению компьютеров фирме Uber, «в узких сферах у человека осталось совсем немного времени для того, чтобы внести некий важный вклад. Однако в более открытых играх, полагаю, такая возможность еще существует. И не только в играх – на мой взгляд, в более широких сферах реального мира человек все еще опережает машину».
В узком и упорядоченном мире шахмат, с его моментальной отдачей и безграничной базой данных, искусственный интеллект совершил рывок вперед в геометрической прогрессии. В сфере вождения, которая имеет множество правил, но при этом гораздо более беспорядочна, ИИ также достиг серьезных успехов, хотя нерешенные задачи еще остались. Однако в реальном, открытом мире, свободном от строгих правил и идеальных исторических данных, искусственный интеллект пока терпит самое настоящее фиаско. Так, после победы суперкомпьютера IBM Watson в игре Jeopardy! [9]его стали позиционировать как революционный инструмент в лечении рака. И в этом качестве он провалился с таким оглушительным треском, что целый ряд экспертов в области ИИ признались мне: в тот момент они не на шутку испугались, что эта история наложит отпечаток на все научные разработки по применению ИИ в здравоохранении. По словам одного онколога, «победа в викторине и лечение рака отличаются одним: в первом случае мы знаем ответы на вопросы». Что же касается рака, в этой области четкие вопросы только формулируются.
В 2009 году уважаемое издание Nature объявило о том, что сервис Google Flu Trends может задействовать результаты поиска для составления прогноза заболеваний гриппом на ближайшую зиму быстрее и почти так же точно, как Центр по контролю и профилактике заболеваний. Однако вскоре эффективность сервиса снизилась, и в 2013 году число спрогнозированных им случаев заболевания на территории США вдвое превысило реальное количество. Сегодня на сайте Google Flu Trends больше не публикуются оценочные данные – на соответствующей странице красуется единственная фраза: «Пока слишком рано для подобных прогнозов». Маркус провел вполне ожидаемую аналогию: «Все системы искусственного интеллекта в какой-то степени саванты». Им нужны стабильные структуры и четкие рамки. Зная правила и ответы, обладая уверенностью в том, что со временем они не изменятся, – как в шахматах, гольфе, классической музыке, – мы можем найти аргументы в пользу гиперспециализированной тренировки с раннего детства. Однако все это лишь узкие, ограниченные модели, не подходящие к большинству областей человеческого знания.
Когда узкая специализация сочетается со «злой» средой, привычка человека полагаться на знакомые схемы может сослужить ему дурную службу – так опытные пожарные принимают неверные решения, оказавшись в непривычной обстановке.
Крис Арджирис, один из учредителей Йельской школы менеджмента, отметил опасность, которую представляет собой привычка относиться к недружелюбной среде так, как если бы она была дружелюбной. В течение пятнадцати лет он наблюдал за поведением успешных консультантов топовых бизнес-школ и заметил, что они отлично справлялись с решением четко поставленных задач, которые можно было быстро оценить. Но в своей работе они задействовали то, что Арджирис назвал «единичной петлей обучения». Когда решение приводило к нежелательному результату, консультант занимал оборонительную позицию. Крис находит их «хрупкую натуру» весьма удивительной, учитывая, что суть их работы заключается в том, чтобы «учить других людей правильно делать свою работу».