Знание-сила, 1999 № 01 (859) - страница 9
Да вот беда: они выводили свое утверждение из гипотезы Танияма, которая сама не доказана! А вдруг она неверна? Математики давно знают, что «из лжи следует все, что угодно»; если догадка Танияма ошибочна, то грош цена безупречным рассуждениям Рибета! Нужно срочно доказывать (или опровергать) гипотезу Танияма – иначе кто-нибудь вроде Фальтингса докажет теорему Ферма иным путем. Он и выйдет в герои!
Вряд ли мы когда-нибудь узнаем, сколько юных или матерых алгебраистов накинулось на теорему Ферма после успеха Фальтингса или после победы Рибета в Г 986 году. Все они старались работать в тайне, чтобы в случае неудачи не быть причисленными к сообществу «чайников»-ферматистов. Известно, что самый удачливый из всех – Эндрю Уайлз из Кембриджа – ощутил вкус победы только в начале 1993 года. Это не столько обрадовало, сколько напугало Уайлза: что если в его Доказательстве гипотезы Танияма обнаружится ошибка или пробел? Тогда погибла его научная репутация! Надо же аккуратно записать доказательство (но это будут многие десятки страниц!) и отложить его на полгода-год, чтобы потом перечитать хладнокровно и придирчиво… Но если за это время кто-нибудь опубликует свое доказательство? Ох, беда…
Все же Уайлз придумал двойной способ быстрой проверки своего доказательства. Во-первых, нужно довериться одному из надежных друзей-коллег и рассказать ему весь ход рассуждений. Со стороны все ошибки видней! Во-вторых, надо прочитать спецкурс на эту тему смышленым студентам и аспирантам: уж эти умники не пропустят ни одной ошибки лектора! Только надо не сообщать им конечную цель курса до последнего момента – иначе об этом узнает весь мир! И конечно, искать такую аудиторию надо подальше от Кембриджа – лучше даже не в Англии, а в Америке… Что может быть лучше далекого Принстона?
Туда и направился Уайлз весной 1993 года. Его терпеливый друг Никлас Кац, выслушав долгий доклад Уайлза, обнаружил в нем ряд пробелов, но все они оказались легко исправимы. Зато принстонские аспиранты вскоре разбежались со спецкурса Уайлза, не желая следовать за прихотливой мыслью лектора, который ведет их неведомо куда. После такой (неособенно глубокой) проверки своей работы Уайлз решил, что пора явить великое чудо свету.
В июне 1993 года в Кембридже проходила очередная конференция, посвященная «теории Ивасава» – популярному разделу теории чисел. Уайлз решил рассказать на ней свое доказательство гипотезы Танияма, не объявляя главный результат до самого конца. Доклад шел долго, но успешно; постепенно начали стекаться журналисты, которые что-то почуяли. Наконец, грянул гром: теорема Ферма доказана! 06- шее ликование не было омрачено какими- либо сомнениями: кажется, все чисто… Но через два месяца Кац, прочтя окончательный текст Уайлза, заметил в нем еще одну брешь. Некий переход в рассуждениях опирался на «систему Эйлера» – но то, что построил Уайлз, такой системой не являлось!
Уайлз проверил узкое место и понял, что тут он ошибся. Хуже того: непонятно, чем заменить ошибочное рассуждение! После этого в жизни Уайлза наступили самые мрачные месяцы. Прежде он вольно синтезировал небывалое доказательство из подручного материала. Теперь он привязан к узкой и четкой задаче – без уверенности, что она имеет решение и что он сумеет его найти в обозримый срок. Недавно Фрей не устоял в такой же борьбе – и вот его имя заслонилось именем удачливого Рибета, хотя догадка Фрея оказалась верна. А что будет с МОЕЙ догадкой и с МОИМ именем?
Эта каторжная работа тянулась ровно год. В сентябре 1994 года Уайлз был готов признать свое поражение и оставить гипотезу Танияма более удачливым преемникам. Приняв такое решение, он начал медленно перечитывать свое доказательство – с начала до конца, вслушиваясь в ритм рассуждений, вновь переживая удовольствие от удачных находок. Дойдя до «проклятого» места, Уайлз, однако, не услышал мысленно фальшивой ноты. Неужели ход его рассуждений был все-таки безупречен, а ошибка возникла лишь при СЛОВЕСНОМ описании мысленного образа? Если тут нет «системы Эйлера», то что тут скрыто?