Знание-сила, 2000 № 07 (877) - страница 8

стр.

За последние годы благодаря работе Космического телескопа имени Хаббла, десятиметровых телескопов имени Кека на Гавайях, а также нескольких восьмиметровых инструментов с «полумягкими» зеркалами, в наблюдательной астрономии произошел сильнейший рывок, далеко продвинувший наши представления о формировании звезд и планет, об эволюции галактик и ранней Вселенной. Поэтому, если мы хотим участвовать в разгадке ее тайн, а не только читать об этом в научно-популярных статьях, нужно и нам строить современные инструменты. Заметьте, я не говорю «гигантские». Современный телескоп – не обязательно монстр. Главное – его гибкость, возможность управления многими параметрами для оптимизации процесса наблюдения.

– В отношении телескопов мы обычно слышим эпитеты одного сорта – большой, огромный, гигантский. Но если вы сказали, что качество современного телескопа не ограничивается размером его объектива, то из каких же составляющих оно складывается ?

В. Сурдин: – В первом приближении этих составляющих три: размер зеркального объектива, четкость даваемого им изображения и эффективность приемника света. Вопрос с последним можно считать решенным: сейчас астрономы переходят с фотопластинок на твердотельные приемники света, полупроводниковые матрицы, регистрирующие практически каждый падающий на них фотон. Именно такие приемники света используют в бытовых видеокамерах, способных, как мы знаем, давать изображение почти в полной темноте. Астрономические матрицы еще лучше (и заметно дороже) бытовых.

Размер зеркала телескопа определяет его «дальнобойность», но размер – это еще не все, важно, чтобы большое зеркало давало идеально резкое изображение, иначе «размазанный» свет слабенькой звезды все равно останется незамеченным. Четкость изображения определяется не только качеством телескопа, но и качеством атмосферы над ним. С одной стороны, нужно благодарить природу, что мы вообще что-то видим со дна своего воздушного океана. Но уж если видим и знаем, что во Вселенной так много интересного и загадочного, то хочется разглядеть все это поотчетливее. Астрономы упорно ищут места на Земле, из которых лучше всего видна Вселенная. Как правило, это средней высоты горные вершины, одиноко стоящие в пустыне или в океане. Таких мест на Земле немного: Канары, Гавайи, горы на севере Чили и в Средней Азии. В этих местах много ясных ночей, сухой и прозрачный воздух. Хорошие телескопы дают там очень четкие изображения.

– Но, вероятно, не такие качественные, как Космический телескоп имени Хаббла, которому земная атмосфера вообще не мешает ?

В- Сурдин: – Разумеется, у Космического телескопа пока нет конкурентов по качеству изображения. Но скоро будут. Стоимость заатмосферного телескопа так высока, что астрономы не надеются на массовый запуск подобных инструментов на орбиту и пытаются создать нечто похожее на Земле. Новое «чудо-оружие» наземной астрономии – адаптивная, подстраивающаяся оптика, которая помогает бороться с главным врагом телескопа – дрожанием изображений, вызванным турбулентностью атмосферы. Даже при экспозиции всего лишь в несколько секунд оно способно размыть изображение светила и сделать незаметными его тонкие детали. Да и в тех тщательно выбранных местах для строительства обсерваторий, о которых я говорил, дрожание изображений составляет около 0,5 угловой секунды. Такому углу на поверхности Луны соответствует пятно размером один километр, а на поверхности Марса – пятно в 250 километров диаметром. В большинстве же обсерваторий мира редкой удачей считается угловое разрешение в одну секунду дуги.

Чтобы победить атмосферу, уже давно были задуманы активные оптические системы, быстро перестраивающие параметры телескопа для компенсации атмосферного дрожания изображений (идея не нова, ее использует каждый, кто наблюдает в бинокль, находясь в движущемся и трясущемся экипаже: движения рук непрерывно компенсируют смещения изображения). В последние годы стали появляться работоспособные системы активной оптики для наблюдений в видимом и близком инфракрасном диапазонах. Разумеется, массивный телескоп – это не маленький бинокль, его невозможно целиком поворачивать за прыгающей по небу звездой. Поэтому сам телескоп с главным зеркалом остается неподвижным, а смещение изображения звезды компенсируется быстрыми покачиваниями маленького вторичного зеркала, порою оно совершает около сотни покачиваний в секунду.