Малыши и математика. Домашний кружок для дошкольников - страница 12
На столе шесть спичек. Складываю из них различные фигурки и прошу ребят по очереди сосчитать, сколько здесь спичек. Каждый раз их оказывается шесть штук… Нет, я слишком увлёкся схоластическими рассуждениями и стал писать как-то по-канцелярски. Давайте вернёмся в живую детскую аудиторию, давайте увидим, как это происходит в жизни.
Каждый новый результат подсчёта встречается настоящим взрывом восторга и хохота. Вот уже Андрюша и Женя кричат, что всегда получится шесть. Вот уже Дима довольно невежливо рвёт у меня из рук спички, чтобы самому сложить какую-то вычурную фигурку, а Петя, напротив, очень вежливо спрашивает, не могу ли я ему дать ещё спичек. Ещё чуть-чуть — и их веселье перерастёт в неуправляемое детское буйство. Надо их как-то удержать, и внимательно выслушать Андрюшу с Женей («Почему вы думаете, что всегда будет шесть?»), и к тому же не упускать новые повороты мысли: ведь тут как раз Дима сложил трёхмерную фигурку — колодец (рис. 3).
Рис. 3.«Колодец» из шести спичек
Я привлекаю к ней всеобщее внимание. На этот раз даже Андрюша с Женей уже не так твёрдо уверены, что снова получится шесть. Считать спички очень трудно — колодец всё время разваливается. Мы его восстанавливаем, считаем снова, он опять разваливается… Наконец у Димы получается семь! Все в лёгком недоумении, но особенно сильного удивления никто не проявляет: семь так семь, хоть и немного странновато. Ну что ж, я, наверное, повторяюсь — ну так и повторюсь, не суть важно: моя педагогическая задача состоит не в том, чтобы сообщать детям окончательно установленные истины, а в том, чтобы разбудить их любознательность. Самый замечательный результат, на который я хотел бы рассчитывать, о котором, можно сказать, мечтаю — это чтобы кто-нибудь из мальчиков через несколько дней (или месяцев) вдруг по собственной инициативе сам сложил спички колодцем и пересчитал их — просто потому что стало интересно, потому что захотелось узнать, как же обстоят дела на самом деле. Ведь это было бы маленькое самостоятельное исследование! Ну, а если этого не случится, то, будем надеяться, произойдёт в другой раз, с другой задачей. (В будущем я имел немало подтверждений, что так оно и бывало неоднократно.) Так или иначе, я ограничиваюсь лишь замечаниями типа «как интересно!» и «замечательно!» — в надежде, что эта ситуация покрепче застрянет у них в памяти.
Детская память — это совершенно поразительная вещь. Не могу удержаться, чтобы не вставить здесь одну историю из более позднего времени.
Одно из занятий: перед нами на столе три фигурки из картона (рис. 4).
Рис. 4.Сколько на этом рисунке квадратов? Сколько прямоугольников? Сколько четырёхугольников? Даже взрослые часто ошибаются в ответах на эти вопросы.
Мы детально и обстоятельно обсуждаем их свойства. Прежде всего, у всех фигурок — по четыре угла. Значит, каждую из них мы можем назвать четырёхугольником. Итого: у нас три четырёхугольника. При этом два из них отличаются тем, что у них все углы прямые. За это их называют прямоугольниками. Один из двух прямоугольников особый: у него все стороны одинакового размера. Его называют квадратом. У квадрата как бы три имени: его можно назвать и квадратом, и прямоугольником, и четырёхугольником — и всё будет правильно. Моя информация встречается не без сопротивления. Дети упорно стремятся мыслить в понятиях непересекающихся классов. А характер их объяснений внушает подозрение в том, что они ещё не о сознали по-настоящему великий закон «целое больше своей части». Десять минут назад они спорили о том, являются ли папы и дедушки мужчинами, а мужчины — людьми. А сейчас они никак не соглашаются называть квадрат прямоугольником: уж или одно, или другое. Я провожу настоящую агиткампанию за равноправие квадрата среди всех прямоугольников. Постепенно моя пропаганда начинает действовать. Мы ещё раз подводим итог:
— Сколько у нас квадратов?
— Один.
— А прямоугольников?
— Два.
— А четырёхугольников?
— Три.
Казалось бы, всё хорошо. И я задаю последний вопрос — я его уже упоминал во введении:
— А чего вообще на свете больше — квадратов или четырёхугольников?