Малыши и математика. Домашний кружок для дошкольников - страница 13

стр.

— Квадратов! — дружно и без тени сомнения отвечают дети.

— Потому что их легче вырезать, — объясняет Дима.

— Потому что их много в домах, на крыше, на трубе, — объясняет Женя.

Такова завязка этой истории. А развязка произошла через полтора года, без всякой подготовки и даже без всякого внешнего повода. Летом на прогулке в лесу Дима неожиданно сказал мне:

— Папа, помнишь, ты давал нам задачу про квадраты и четырёхугольники — чего больше. Так мне кажется, мы тогда тебе неправильно ответили. На самом деле больше четырёхугольников.

И дальше довольно толково объяснил, почему. С тех пор я и исповедую принцип: вопросы важнее ответов.

…Психологи проводили и продолжают проводить множество экспериментов, пытаясь научить детей некоторым первоначальным математическим закономерностям. Например, делают так. Сначала группу ребят проверяют, понимают ли они такую простую вещь: если кусок пластилина помять, раскатать и вообще придать ему другую форму, то количество пластилина от этого не изменится. Тех, кто этого не понимает, делят на две части. Одну оставляют «свободной» — это так называемая контрольная группа. А другую начинают обучать закону сохранения количества вещества: показывают, объясняют, взвешивают, сравнивают. Недели через две опять проверяют участников обеих групп, смотрят, кто чему научился. Чаще всего в результате оказывается, что прогресс в обеих группах весьма незначительный и при этом совершенно одинаковый. Обычно психологи недоумевают: почему же дети, которых так старательно обучали, так ничему и не научились. Я, читая отчёты об этих экспериментах, заинтересовался противоположным явлением: почему дети, которых ничему не учили (контрольная группа), тоже чуть-чуть продвинулись вперёд. Моя гипотеза после нескольких лет занятий с малышами такова: это происходит потому, что им тоже задавали вопросы.

Однако вернёмся на наше занятие. Следующая задача — ещё одна вариация всё на ту же тему закона сохранения количества предметов. Те самые шесть спичек, которые ещё остались на столе после предыдущей задачи, раскладываются в рядок. Я прошу к каждой спичке приложить пуговицу (рис. 5).



Рис. 5.Спичек и пуговиц поровну.


Стандартный вопрос:

— Чего больше — спичек или пуговиц?

— Поровну.

— Значит, пуговиц столько же, сколько спичек, — резюмирую я.

Забираю все пуговицы в кулак и прошу сказать, сколько у меня в кулаке спрятано пуговиц. Характерно, что никто не делает ни малейшей попытки подсчитать спички. Да и зачем, собственно? Ведь спрашивают про пуговицы — значит, и считать нужно пуговицы. Дима как человек со мной на самой короткой ноге пытается разжать мой кулак, другие удивлённо спрашивают:

— Как же мы можем их сосчитать?

Я смеюсь:

— Сосчитать, конечно, нельзя — пуговицы спрятаны. Но попробуйте как-нибудь угадать.

Тогда на меня обрушивается настоящий шквал отгадок, чаще всего ни на чём не основанных. Каждый кричит что-то своё; при этом один лишь Женя кричит правильный ответ. Я пытаюсь его выслушать, спросить, почему, но он ретируется. Жене вообще часто мешает робость. Пока все кричат хором, перебивая друг друга, он, пожалуй, чаще других кричит правильный ответ. Но стоит всех утихомирить и обратиться лично к нему, как он смущается и уходит в себя. С Андрюшей — другая проблема. Он мальчик очень целеустремлённый, и на наших занятиях ему явно не хватает мотивации. Когда я в следующий раз предложил ту же задачу в другой аранжировке — уже были не пуговицы со спичками, а солдаты с ружьями, потом они ушли, а ружья остались, и теперь разведчику нужно узнать, сколько было солдат — вот тогда он первым догадался, что можно сосчитать ружья. И ещё он любит игры, в которых кто-то должен выйти победителем. Но у меня не всегда хватает фантазии представить задачу в подходящей форме. Тем более что для остальных детей этот аспект безразличен. Зато Дима вообще не любит решать чужие задачи, а любит придумывать свои. С трудом я подобрал к нему ключик — стал говорить примерно так: «Придумай задачу, в которой было бы…» — и дальше излагаю своё условие. К тому же его решения часто отличаются какой-то странной вычурностью (особенно это будет видно в следующей задаче); его довольно трудно ввести в колею здравого смысла. И с Петей, конечно, свои сложности… Как же мне поспеть-то — одному на всех? Боже мой, у меня всего четыре ученика, а я не могу обеспечить им индивидуальный подход! Что же может сделать учитель, у которого сорок человек в классе? Учителя часто любят сравнивать с дирижёром. Я сам себе кажусь похожим скорее на жонглёра, у которого вот-вот всё рассыпется по арене. Так и сейчас: пока я пытаюсь беседовать с Женей — что да почему — Дима уже вытащил карточки для следующего задания («четвёртый — лишний») и спрашивает: